\left\{ \begin{array} { l } { x + 3 y = 9 } \\ { x + y = 5 } \end{array} \right.
Ebatzi: x, y
x=3
y=2
Grafikoa
Partekatu
Kopiatu portapapeletan
x+3y=9,x+y=5
Ekuazio pare bat ordezkapen bidez ebazteko, lehenengo, ebatzi aldagaietako baten ekuazioa. Gero, beste ekuazioan, ordeztu aldagai horren balioa ekuazioaren emaitzarekin.
x+3y=9
Aukeratu ekuazio bat eta ebatzi x. Horretarako, isolatu x berdin ikurraren ezkerraldean.
x=-3y+9
Egin ken 3y ekuazioaren bi aldeetan.
-3y+9+y=5
Ordeztu -3y+9 balioa x balioarekin beste ekuazioan (x+y=5).
-2y+9=5
Gehitu -3y eta y.
-2y=-4
Egin ken 9 ekuazioaren bi aldeetan.
y=2
Zatitu ekuazioaren bi aldeak -2 balioarekin.
x=-3\times 2+9
Ordeztu 2 y balioarekin x=-3y+9 ekuazioan. Emaitzak aldagai bakarra duenez, x ebatz dezakezu zuzenean.
x=-6+9
Egin -3 bider 2.
x=3
Gehitu 9 eta -6.
x=3,y=2
Ebatzi da sistema.
x+3y=9,x+y=5
Jarri ekuazioak ohiko eran eta erabili matrizeak ekuazio-sistema ebazteko.
\left(\begin{matrix}1&3\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\5\end{matrix}\right)
Idatzi ekuazioak matrize forman.
inverse(\left(\begin{matrix}1&3\\1&1\end{matrix}\right))\left(\begin{matrix}1&3\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\1&1\end{matrix}\right))\left(\begin{matrix}9\\5\end{matrix}\right)
Biderkatu ezkerretik \left(\begin{matrix}1&3\\1&1\end{matrix}\right) matrizearen alderantzizkoa ekuazioarekin.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\1&1\end{matrix}\right))\left(\begin{matrix}9\\5\end{matrix}\right)
Matrize baten biderkadura eta haren alderantzizkoa da identitate-matrizea.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&3\\1&1\end{matrix}\right))\left(\begin{matrix}9\\5\end{matrix}\right)
Biderkatu berdin ikurraren ezkerraldeko matrizeak.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-3}&-\frac{3}{1-3}\\-\frac{1}{1-3}&\frac{1}{1-3}\end{matrix}\right)\left(\begin{matrix}9\\5\end{matrix}\right)
\left(\begin{matrix}a&b\\c&d\end{matrix}\right) 2\times 2 matrizeari dagokionez, alderantzizko matrizea \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) da; ondorioz, matrizearen ekuazioa matrizeak biderkatzeko problema gisa idatz daiteke.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}&\frac{3}{2}\\\frac{1}{2}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}9\\5\end{matrix}\right)
Egin ariketa aritmetikoa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2}\times 9+\frac{3}{2}\times 5\\\frac{1}{2}\times 9-\frac{1}{2}\times 5\end{matrix}\right)
Biderkatu matrizeak.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\2\end{matrix}\right)
Egin ariketa aritmetikoa.
x=3,y=2
Atera x eta y matrize-elementuak.
x+3y=9,x+y=5
Ezabapen bidez ebazteko, aldagaietako baten koefizienteak berdinak izan behar dira bi ekuazioetan. Horrela, sinplifikatu egingo da aldagaia ekuazio bat bestetik ateratzen denean.
x-x+3y-y=9-5
Egin x+y=5 ken x+3y=9 berdin ikurraren bi aldeetako antzeko gaien arteko kenketa eginez.
3y-y=9-5
Gehitu x eta -x. Sinplifikatu egiten dira x eta -x. Beraz, ebatzi beharreko aldagai bakarra duen ekuazioa geratzen da.
2y=9-5
Gehitu 3y eta -y.
2y=4
Gehitu 9 eta -5.
y=2
Zatitu ekuazioaren bi aldeak 2 balioarekin.
x+2=5
Ordeztu 2 y balioarekin x+y=5 ekuazioan. Emaitzak aldagai bakarra duenez, x ebatz dezakezu zuzenean.
x=3
Egin ken 2 ekuazioaren bi aldeetan.
x=3,y=2
Ebatzi da sistema.
Adibideak
Ekuazio koadratikoa
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuazio lineala
y = 3x + 4
Aritmetika
699 * 533
Matrizea
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Aldibereko ekuazioa
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentziazioa
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazioa
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Mugak
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}