Eduki nagusira salto egin
Ebatzi: x, y
Tick mark Image
Grafikoa

Bilaketaren antzeko arazoak webgunean

Partekatu

2x-y=4,3x-5y=15
Ekuazio pare bat ordezkapen bidez ebazteko, lehenengo, ebatzi aldagaietako baten ekuazioa. Gero, beste ekuazioan, ordeztu aldagai horren balioa ekuazioaren emaitzarekin.
2x-y=4
Aukeratu ekuazio bat eta ebatzi x. Horretarako, isolatu x berdin ikurraren ezkerraldean.
2x=y+4
Gehitu y ekuazioaren bi aldeetan.
x=\frac{1}{2}\left(y+4\right)
Zatitu ekuazioaren bi aldeak 2 balioarekin.
x=\frac{1}{2}y+2
Egin \frac{1}{2} bider y+4.
3\left(\frac{1}{2}y+2\right)-5y=15
Ordeztu \frac{y}{2}+2 balioa x balioarekin beste ekuazioan (3x-5y=15).
\frac{3}{2}y+6-5y=15
Egin 3 bider \frac{y}{2}+2.
-\frac{7}{2}y+6=15
Gehitu \frac{3y}{2} eta -5y.
-\frac{7}{2}y=9
Egin ken 6 ekuazioaren bi aldeetan.
y=-\frac{18}{7}
Zatitu ekuazioaren bi aldeak -\frac{7}{2} balioarekin. Bi aldeak frakzioaren frakzio erreziprokoarekin biderkatzearen berdina da.
x=\frac{1}{2}\left(-\frac{18}{7}\right)+2
Ordeztu -\frac{18}{7} y balioarekin x=\frac{1}{2}y+2 ekuazioan. Emaitzak aldagai bakarra duenez, x ebatz dezakezu zuzenean.
x=-\frac{9}{7}+2
Egin \frac{1}{2} bider -\frac{18}{7}, zenbakitzailea zenbakitzailearekin eta izendatzailea eta izendatzailearekin biderkatuta. Gero, ahal dela, sinplifikatu zatikia, ahalik eta gai gutxien izan ditzan.
x=\frac{5}{7}
Gehitu 2 eta -\frac{9}{7}.
x=\frac{5}{7},y=-\frac{18}{7}
Ebatzi da sistema.
2x-y=4,3x-5y=15
Jarri ekuazioak ohiko eran eta erabili matrizeak ekuazio-sistema ebazteko.
\left(\begin{matrix}2&-1\\3&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\15\end{matrix}\right)
Idatzi ekuazioak matrize forman.
inverse(\left(\begin{matrix}2&-1\\3&-5\end{matrix}\right))\left(\begin{matrix}2&-1\\3&-5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\3&-5\end{matrix}\right))\left(\begin{matrix}4\\15\end{matrix}\right)
Biderkatu ezkerretik \left(\begin{matrix}2&-1\\3&-5\end{matrix}\right) matrizearen alderantzizkoa ekuazioarekin.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\3&-5\end{matrix}\right))\left(\begin{matrix}4\\15\end{matrix}\right)
Matrize baten biderkadura eta haren alderantzizkoa da identitate-matrizea.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-1\\3&-5\end{matrix}\right))\left(\begin{matrix}4\\15\end{matrix}\right)
Biderkatu berdin ikurraren ezkerraldeko matrizeak.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{5}{2\left(-5\right)-\left(-3\right)}&-\frac{-1}{2\left(-5\right)-\left(-3\right)}\\-\frac{3}{2\left(-5\right)-\left(-3\right)}&\frac{2}{2\left(-5\right)-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}4\\15\end{matrix}\right)
\left(\begin{matrix}a&b\\c&d\end{matrix}\right) 2\times 2 matrizeari dagokionez, alderantzizko matrizea \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) da; ondorioz, matrizearen ekuazioa matrizeak biderkatzeko problema gisa idatz daiteke.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{7}&-\frac{1}{7}\\\frac{3}{7}&-\frac{2}{7}\end{matrix}\right)\left(\begin{matrix}4\\15\end{matrix}\right)
Egin ariketa aritmetikoa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{7}\times 4-\frac{1}{7}\times 15\\\frac{3}{7}\times 4-\frac{2}{7}\times 15\end{matrix}\right)
Biderkatu matrizeak.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{7}\\-\frac{18}{7}\end{matrix}\right)
Egin ariketa aritmetikoa.
x=\frac{5}{7},y=-\frac{18}{7}
Atera x eta y matrize-elementuak.
2x-y=4,3x-5y=15
Ezabapen bidez ebazteko, aldagaietako baten koefizienteak berdinak izan behar dira bi ekuazioetan. Horrela, sinplifikatu egingo da aldagaia ekuazio bat bestetik ateratzen denean.
3\times 2x+3\left(-1\right)y=3\times 4,2\times 3x+2\left(-5\right)y=2\times 15
2x eta 3x berdintzeko, biderkatu 3 balioarekin lehenengo ekuazioaren bi aldeetan dauden gaiak, eta biderkatu 2 balioarekin bigarren ekuazioaren bi aldeetan dauden gaiak.
6x-3y=12,6x-10y=30
Sinplifikatu.
6x-6x-3y+10y=12-30
Egin 6x-10y=30 ken 6x-3y=12 berdin ikurraren bi aldeetako antzeko gaien arteko kenketa eginez.
-3y+10y=12-30
Gehitu 6x eta -6x. Sinplifikatu egiten dira 6x eta -6x. Beraz, ebatzi beharreko aldagai bakarra duen ekuazioa geratzen da.
7y=12-30
Gehitu -3y eta 10y.
7y=-18
Gehitu 12 eta -30.
y=-\frac{18}{7}
Zatitu ekuazioaren bi aldeak 7 balioarekin.
3x-5\left(-\frac{18}{7}\right)=15
Ordeztu -\frac{18}{7} y balioarekin 3x-5y=15 ekuazioan. Emaitzak aldagai bakarra duenez, x ebatz dezakezu zuzenean.
3x+\frac{90}{7}=15
Egin -5 bider -\frac{18}{7}.
3x=\frac{15}{7}
Egin ken \frac{90}{7} ekuazioaren bi aldeetan.
x=\frac{5}{7}
Zatitu ekuazioaren bi aldeak 3 balioarekin.
x=\frac{5}{7},y=-\frac{18}{7}
Ebatzi da sistema.