Eduki nagusira salto egin
Ebatzi: x, y
Tick mark Image
Grafikoa

Bilaketaren antzeko arazoak webgunean

Partekatu

x-y=0
Probatu bigarren ekuazioa sinplifikatuta. Kendu y bi aldeetatik.
2x+y=60,x-y=0
Ekuazio pare bat ordezkapen bidez ebazteko, lehenengo, ebatzi aldagaietako baten ekuazioa. Gero, beste ekuazioan, ordeztu aldagai horren balioa ekuazioaren emaitzarekin.
2x+y=60
Aukeratu ekuazio bat eta ebatzi x. Horretarako, isolatu x berdin ikurraren ezkerraldean.
2x=-y+60
Egin ken y ekuazioaren bi aldeetan.
x=\frac{1}{2}\left(-y+60\right)
Zatitu ekuazioaren bi aldeak 2 balioarekin.
x=-\frac{1}{2}y+30
Egin \frac{1}{2} bider -y+60.
-\frac{1}{2}y+30-y=0
Ordeztu -\frac{y}{2}+30 balioa x balioarekin beste ekuazioan (x-y=0).
-\frac{3}{2}y+30=0
Gehitu -\frac{y}{2} eta -y.
-\frac{3}{2}y=-30
Egin ken 30 ekuazioaren bi aldeetan.
y=20
Zatitu ekuazioaren bi aldeak -\frac{3}{2} balioarekin. Bi aldeak frakzioaren frakzio erreziprokoarekin biderkatzearen berdina da.
x=-\frac{1}{2}\times 20+30
Ordeztu 20 y balioarekin x=-\frac{1}{2}y+30 ekuazioan. Emaitzak aldagai bakarra duenez, x ebatz dezakezu zuzenean.
x=-10+30
Egin -\frac{1}{2} bider 20.
x=20
Gehitu 30 eta -10.
x=20,y=20
Ebatzi da sistema.
x-y=0
Probatu bigarren ekuazioa sinplifikatuta. Kendu y bi aldeetatik.
2x+y=60,x-y=0
Jarri ekuazioak ohiko eran eta erabili matrizeak ekuazio-sistema ebazteko.
\left(\begin{matrix}2&1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}60\\0\end{matrix}\right)
Idatzi ekuazioak matrize forman.
inverse(\left(\begin{matrix}2&1\\1&-1\end{matrix}\right))\left(\begin{matrix}2&1\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\1&-1\end{matrix}\right))\left(\begin{matrix}60\\0\end{matrix}\right)
Biderkatu ezkerretik \left(\begin{matrix}2&1\\1&-1\end{matrix}\right) matrizearen alderantzizkoa ekuazioarekin.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\1&-1\end{matrix}\right))\left(\begin{matrix}60\\0\end{matrix}\right)
Matrize baten biderkadura eta haren alderantzizkoa da identitate-matrizea.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\1&-1\end{matrix}\right))\left(\begin{matrix}60\\0\end{matrix}\right)
Biderkatu berdin ikurraren ezkerraldeko matrizeak.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2\left(-1\right)-1}&-\frac{1}{2\left(-1\right)-1}\\-\frac{1}{2\left(-1\right)-1}&\frac{2}{2\left(-1\right)-1}\end{matrix}\right)\left(\begin{matrix}60\\0\end{matrix}\right)
\left(\begin{matrix}a&b\\c&d\end{matrix}\right) 2\times 2 matrizeari dagokionez, alderantzizko matrizea \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) da; ondorioz, matrizearen ekuazioa matrizeak biderkatzeko problema gisa idatz daiteke.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&\frac{1}{3}\\\frac{1}{3}&-\frac{2}{3}\end{matrix}\right)\left(\begin{matrix}60\\0\end{matrix}\right)
Egin ariketa aritmetikoa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 60\\\frac{1}{3}\times 60\end{matrix}\right)
Biderkatu matrizeak.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}20\\20\end{matrix}\right)
Egin ariketa aritmetikoa.
x=20,y=20
Atera x eta y matrize-elementuak.
x-y=0
Probatu bigarren ekuazioa sinplifikatuta. Kendu y bi aldeetatik.
2x+y=60,x-y=0
Ezabapen bidez ebazteko, aldagaietako baten koefizienteak berdinak izan behar dira bi ekuazioetan. Horrela, sinplifikatu egingo da aldagaia ekuazio bat bestetik ateratzen denean.
2x+y=60,2x+2\left(-1\right)y=0
2x eta x berdintzeko, biderkatu 1 balioarekin lehenengo ekuazioaren bi aldeetan dauden gaiak, eta biderkatu 2 balioarekin bigarren ekuazioaren bi aldeetan dauden gaiak.
2x+y=60,2x-2y=0
Sinplifikatu.
2x-2x+y+2y=60
Egin 2x-2y=0 ken 2x+y=60 berdin ikurraren bi aldeetako antzeko gaien arteko kenketa eginez.
y+2y=60
Gehitu 2x eta -2x. Sinplifikatu egiten dira 2x eta -2x. Beraz, ebatzi beharreko aldagai bakarra duen ekuazioa geratzen da.
3y=60
Gehitu y eta 2y.
y=20
Zatitu ekuazioaren bi aldeak 3 balioarekin.
x-20=0
Ordeztu 20 y balioarekin x-y=0 ekuazioan. Emaitzak aldagai bakarra duenez, x ebatz dezakezu zuzenean.
x=20
Gehitu 20 ekuazioaren bi aldeetan.
x=20,y=20
Ebatzi da sistema.