\left\{ \begin{array} { c } { x + y = 5 } \\ { - 3 x + y = - 3 } \end{array} \right.
Ebatzi: x, y
x=2
y=3
Grafikoa
Partekatu
Kopiatu portapapeletan
x+y=5,-3x+y=-3
Ekuazio pare bat ordezkapen bidez ebazteko, lehenengo, ebatzi aldagaietako baten ekuazioa. Gero, beste ekuazioan, ordeztu aldagai horren balioa ekuazioaren emaitzarekin.
x+y=5
Aukeratu ekuazio bat eta ebatzi x. Horretarako, isolatu x berdin ikurraren ezkerraldean.
x=-y+5
Egin ken y ekuazioaren bi aldeetan.
-3\left(-y+5\right)+y=-3
Ordeztu -y+5 balioa x balioarekin beste ekuazioan (-3x+y=-3).
3y-15+y=-3
Egin -3 bider -y+5.
4y-15=-3
Gehitu 3y eta y.
4y=12
Gehitu 15 ekuazioaren bi aldeetan.
y=3
Zatitu ekuazioaren bi aldeak 4 balioarekin.
x=-3+5
Ordeztu 3 y balioarekin x=-y+5 ekuazioan. Emaitzak aldagai bakarra duenez, x ebatz dezakezu zuzenean.
x=2
Gehitu 5 eta -3.
x=2,y=3
Ebatzi da sistema.
x+y=5,-3x+y=-3
Jarri ekuazioak ohiko eran eta erabili matrizeak ekuazio-sistema ebazteko.
\left(\begin{matrix}1&1\\-3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\-3\end{matrix}\right)
Idatzi ekuazioak matrize forman.
inverse(\left(\begin{matrix}1&1\\-3&1\end{matrix}\right))\left(\begin{matrix}1&1\\-3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-3&1\end{matrix}\right))\left(\begin{matrix}5\\-3\end{matrix}\right)
Biderkatu ezkerretik \left(\begin{matrix}1&1\\-3&1\end{matrix}\right) matrizearen alderantzizkoa ekuazioarekin.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-3&1\end{matrix}\right))\left(\begin{matrix}5\\-3\end{matrix}\right)
Matrize baten biderkadura eta haren alderantzizkoa da identitate-matrizea.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-3&1\end{matrix}\right))\left(\begin{matrix}5\\-3\end{matrix}\right)
Biderkatu berdin ikurraren ezkerraldeko matrizeak.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-3\right)}&-\frac{1}{1-\left(-3\right)}\\-\frac{-3}{1-\left(-3\right)}&\frac{1}{1-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}5\\-3\end{matrix}\right)
\left(\begin{matrix}a&b\\c&d\end{matrix}\right) 2\times 2 matrizeari dagokionez, alderantzizko matrizea \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right) da; ondorioz, matrizearen ekuazioa matrizeak biderkatzeko problema gisa idatz daiteke.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&-\frac{1}{4}\\\frac{3}{4}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}5\\-3\end{matrix}\right)
Egin ariketa aritmetikoa.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\times 5-\frac{1}{4}\left(-3\right)\\\frac{3}{4}\times 5+\frac{1}{4}\left(-3\right)\end{matrix}\right)
Biderkatu matrizeak.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\3\end{matrix}\right)
Egin ariketa aritmetikoa.
x=2,y=3
Atera x eta y matrize-elementuak.
x+y=5,-3x+y=-3
Ezabapen bidez ebazteko, aldagaietako baten koefizienteak berdinak izan behar dira bi ekuazioetan. Horrela, sinplifikatu egingo da aldagaia ekuazio bat bestetik ateratzen denean.
x+3x+y-y=5+3
Egin -3x+y=-3 ken x+y=5 berdin ikurraren bi aldeetako antzeko gaien arteko kenketa eginez.
x+3x=5+3
Gehitu y eta -y. Sinplifikatu egiten dira y eta -y. Beraz, ebatzi beharreko aldagai bakarra duen ekuazioa geratzen da.
4x=5+3
Gehitu x eta 3x.
4x=8
Gehitu 5 eta 3.
x=2
Zatitu ekuazioaren bi aldeak 4 balioarekin.
-3\times 2+y=-3
Ordeztu 2 x balioarekin -3x+y=-3 ekuazioan. Emaitzak aldagai bakarra duenez, y ebatz dezakezu zuzenean.
-6+y=-3
Egin -3 bider 2.
y=3
Gehitu 6 ekuazioaren bi aldeetan.
x=2,y=3
Ebatzi da sistema.
Adibideak
Ekuazio koadratikoa
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuazio lineala
y = 3x + 4
Aritmetika
699 * 533
Matrizea
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Aldibereko ekuazioa
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentziazioa
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazioa
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Mugak
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}