Eduki nagusira salto egin
Ebaluatu
Tick mark Image

Bilaketaren antzeko arazoak webgunean

Partekatu

\int _{0}^{2}\left(x\left(x^{2}-4x+4\right)\right)^{2}\mathrm{d}x
\left(x-2\right)^{2} zabaltzeko, erabili Newton-en binomioa \left(a-b\right)^{2}=a^{2}-2ab+b^{2}.
\int _{0}^{2}\left(x^{3}-4x^{2}+4x\right)^{2}\mathrm{d}x
Erabili banaketa-propietatea x eta x^{2}-4x+4 biderkatzeko.
\int _{0}^{2}x^{6}-8x^{5}+24x^{4}-32x^{3}+16x^{2}\mathrm{d}x
Egin x^{3}-4x^{2}+4x ber bi.
\int x^{6}-8x^{5}+24x^{4}-32x^{3}+16x^{2}\mathrm{d}x
Ebaluatu lehenik integral indefinitua.
\int x^{6}\mathrm{d}x+\int -8x^{5}\mathrm{d}x+\int 24x^{4}\mathrm{d}x+\int -32x^{3}\mathrm{d}x+\int 16x^{2}\mathrm{d}x
Integratu gehiketa gaiz gai.
\int x^{6}\mathrm{d}x-8\int x^{5}\mathrm{d}x+24\int x^{4}\mathrm{d}x-32\int x^{3}\mathrm{d}x+16\int x^{2}\mathrm{d}x
Deskonposatu konstantea gaika.
\frac{x^{7}}{7}-8\int x^{5}\mathrm{d}x+24\int x^{4}\mathrm{d}x-32\int x^{3}\mathrm{d}x+16\int x^{2}\mathrm{d}x
Baldin k\neq -1rentzat \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}, ordeztu \int x^{6}\mathrm{d}x \frac{x^{7}}{7}rekin.
\frac{x^{7}}{7}-\frac{4x^{6}}{3}+24\int x^{4}\mathrm{d}x-32\int x^{3}\mathrm{d}x+16\int x^{2}\mathrm{d}x
Baldin k\neq -1rentzat \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}, ordeztu \int x^{5}\mathrm{d}x \frac{x^{6}}{6}rekin. Egin -8 bider \frac{x^{6}}{6}.
\frac{x^{7}}{7}-\frac{4x^{6}}{3}+\frac{24x^{5}}{5}-32\int x^{3}\mathrm{d}x+16\int x^{2}\mathrm{d}x
Baldin k\neq -1rentzat \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}, ordeztu \int x^{4}\mathrm{d}x \frac{x^{5}}{5}rekin. Egin 24 bider \frac{x^{5}}{5}.
\frac{x^{7}}{7}-\frac{4x^{6}}{3}+\frac{24x^{5}}{5}-8x^{4}+16\int x^{2}\mathrm{d}x
Baldin k\neq -1rentzat \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}, ordeztu \int x^{3}\mathrm{d}x \frac{x^{4}}{4}rekin. Egin -32 bider \frac{x^{4}}{4}.
\frac{x^{7}}{7}-\frac{4x^{6}}{3}+\frac{24x^{5}}{5}-8x^{4}+\frac{16x^{3}}{3}
Baldin k\neq -1rentzat \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}, ordeztu \int x^{2}\mathrm{d}x \frac{x^{3}}{3}rekin. Egin 16 bider \frac{x^{3}}{3}.
\frac{16x^{3}}{3}-8x^{4}+\frac{24x^{5}}{5}-\frac{4x^{6}}{3}+\frac{x^{7}}{7}
Sinplifikatu.
\frac{16}{3}\times 2^{3}-8\times 2^{4}+\frac{24}{5}\times 2^{5}-\frac{4}{3}\times 2^{6}+\frac{2^{7}}{7}-\left(\frac{16}{3}\times 0^{3}-8\times 0^{4}+\frac{24}{5}\times 0^{5}-\frac{4}{3}\times 0^{6}+\frac{0^{7}}{7}\right)
Hau da integral definitua: integrazioaren goiko limitean ebaluatutako adierazpenaren jatorrizko funtzioa ken integrazioaren beheko limitean ebaluatutako jatorrizko funtzioa.
\frac{128}{105}
Sinplifikatu.