Eduki nagusira salto egin
Ebaluatu
Tick mark Image

Bilaketaren antzeko arazoak webgunean

Partekatu

\int x^{2}+x+1\mathrm{d}x
Ebaluatu lehenik integral indefinitua.
\int x^{2}\mathrm{d}x+\int x\mathrm{d}x+\int 1\mathrm{d}x
Integratu gehiketa gaiz gai.
\frac{x^{3}}{3}+\int x\mathrm{d}x+\int 1\mathrm{d}x
Baldin k\neq -1rentzat \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}, ordeztu \int x^{2}\mathrm{d}x \frac{x^{3}}{3}rekin.
\frac{x^{3}}{3}+\frac{x^{2}}{2}+\int 1\mathrm{d}x
Baldin k\neq -1rentzat \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}, ordeztu \int x\mathrm{d}x \frac{x^{2}}{2}rekin.
\frac{x^{3}}{3}+\frac{x^{2}}{2}+x
Aurkitu 1en integrala integral arrunten taulako \int a\mathrm{d}x=ax araua erabiliz.
\frac{1^{3}}{3}+\frac{1^{2}}{2}+1-\left(\frac{\left(-1\right)^{3}}{3}+\frac{\left(-1\right)^{2}}{2}-1\right)
Hau da integral definitua: integrazioaren goiko limitean ebaluatutako adierazpenaren jatorrizko funtzioa ken integrazioaren beheko limitean ebaluatutako jatorrizko funtzioa.
\frac{8}{3}
Sinplifikatu.