Ebaluatu
-\frac{1172330495}{12}\approx -97694207.916666667
Partekatu
Kopiatu portapapeletan
\int _{0\times 15}^{665}-x^{2}+2x+1-\frac{1}{2}x\mathrm{d}x
-1+\frac{1}{2}x funtzioaren aurkakoa aurkitzeko, bilatu gai bakoitzaren aurkakoa.
\int _{0\times 15}^{665}-x^{2}+\frac{3}{2}x+1\mathrm{d}x
\frac{3}{2}x lortzeko, konbinatu 2x eta -\frac{1}{2}x.
\int _{0}^{665}-x^{2}+\frac{3}{2}x+1\mathrm{d}x
0 lortzeko, biderkatu 0 eta 15.
\int -x^{2}+\frac{3x}{2}+1\mathrm{d}x
Ebaluatu lehenik integral indefinitua.
\int -x^{2}\mathrm{d}x+\int \frac{3x}{2}\mathrm{d}x+\int 1\mathrm{d}x
Integratu gehiketa gaiz gai.
-\int x^{2}\mathrm{d}x+\frac{3\int x\mathrm{d}x}{2}+\int 1\mathrm{d}x
Deskonposatu konstantea gaika.
-\frac{x^{3}}{3}+\frac{3\int x\mathrm{d}x}{2}+\int 1\mathrm{d}x
Baldin k\neq -1rentzat \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}, ordeztu \int x^{2}\mathrm{d}x \frac{x^{3}}{3}rekin. Egin -1 bider \frac{x^{3}}{3}.
-\frac{x^{3}}{3}+\frac{3x^{2}}{4}+\int 1\mathrm{d}x
Baldin k\neq -1rentzat \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}, ordeztu \int x\mathrm{d}x \frac{x^{2}}{2}rekin. Egin \frac{3}{2} bider \frac{x^{2}}{2}.
-\frac{x^{3}}{3}+\frac{3x^{2}}{4}+x
Aurkitu 1en integrala integral arrunten taulako \int a\mathrm{d}x=ax araua erabiliz.
-\frac{665^{3}}{3}+\frac{3}{4}\times 665^{2}+665-\left(-\frac{0^{3}}{3}+\frac{3}{4}\times 0^{2}+0\right)
Hau da integral definitua: integrazioaren goiko limitean ebaluatutako adierazpenaren jatorrizko funtzioa ken integrazioaren beheko limitean ebaluatutako jatorrizko funtzioa.
-\frac{1172330495}{12}
Sinplifikatu.
Adibideak
Ekuazio koadratikoa
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuazio lineala
y = 3x + 4
Aritmetika
699 * 533
Matrizea
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Aldibereko ekuazioa
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentziazioa
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazioa
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Mugak
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}