Eduki nagusira salto egin
Ebaluatu
Tick mark Image
Diferentziatu x balioarekiko
Tick mark Image

Bilaketaren antzeko arazoak webgunean

Partekatu

\int 20x\left(8x^{3}+36x^{2}+54x+27\right)\mathrm{d}x
\left(2x+3\right)^{3} zabaltzeko, erabili Newton-en binomioa \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3}.
\int 160x^{4}+720x^{3}+1080x^{2}+540x\mathrm{d}x
Erabili banaketa-propietatea 20x eta 8x^{3}+36x^{2}+54x+27 biderkatzeko.
\int 160x^{4}\mathrm{d}x+\int 720x^{3}\mathrm{d}x+\int 1080x^{2}\mathrm{d}x+\int 540x\mathrm{d}x
Integratu gehiketa gaiz gai.
160\int x^{4}\mathrm{d}x+720\int x^{3}\mathrm{d}x+1080\int x^{2}\mathrm{d}x+540\int x\mathrm{d}x
Deskonposatu konstantea gaika.
32x^{5}+720\int x^{3}\mathrm{d}x+1080\int x^{2}\mathrm{d}x+540\int x\mathrm{d}x
Baldin k\neq -1rentzat \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}, ordeztu \int x^{4}\mathrm{d}x \frac{x^{5}}{5}rekin. Egin 160 bider \frac{x^{5}}{5}.
32x^{5}+180x^{4}+1080\int x^{2}\mathrm{d}x+540\int x\mathrm{d}x
Baldin k\neq -1rentzat \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}, ordeztu \int x^{3}\mathrm{d}x \frac{x^{4}}{4}rekin. Egin 720 bider \frac{x^{4}}{4}.
32x^{5}+180x^{4}+360x^{3}+540\int x\mathrm{d}x
Baldin k\neq -1rentzat \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}, ordeztu \int x^{2}\mathrm{d}x \frac{x^{3}}{3}rekin. Egin 1080 bider \frac{x^{3}}{3}.
32x^{5}+180x^{4}+360x^{3}+270x^{2}
Baldin k\neq -1rentzat \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}, ordeztu \int x\mathrm{d}x \frac{x^{2}}{2}rekin. Egin 540 bider \frac{x^{2}}{2}.
270x^{2}+360x^{3}+180x^{4}+32x^{5}+С
F\left(x\right) f\left(x\right)ren jatorrizkoa bada, orduan f\left(x\right)ren jatorrizko guztien multzoa ematen du F\left(x\right)+Ck. Beraz, gehitu C\in \mathrm{R} integrazio-konstantea emaitzari.