Eduki nagusira salto egin
Ebaluatu
Tick mark Image
Diferentziatu x balioarekiko
Tick mark Image

Bilaketaren antzeko arazoak webgunean

Partekatu

\int 2x^{2}\mathrm{d}x+\int 3x\mathrm{d}x+\int -\frac{1}{x}\mathrm{d}x
Integratu gehiketa gaiz gai.
2\int x^{2}\mathrm{d}x+3\int x\mathrm{d}x-\int \frac{1}{x}\mathrm{d}x
Deskonposatu konstantea gaika.
\frac{2x^{3}}{3}+3\int x\mathrm{d}x-\int \frac{1}{x}\mathrm{d}x
Baldin k\neq -1rentzat \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}, ordeztu \int x^{2}\mathrm{d}x \frac{x^{3}}{3}rekin. Egin 2 bider \frac{x^{3}}{3}.
\frac{2x^{3}}{3}+\frac{3x^{2}}{2}-\int \frac{1}{x}\mathrm{d}x
Baldin k\neq -1rentzat \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}, ordeztu \int x\mathrm{d}x \frac{x^{2}}{2}rekin. Egin 3 bider \frac{x^{2}}{2}.
\frac{2x^{3}}{3}+\frac{3x^{2}}{2}-\ln(|x|)
Erabili integral arrunteko taulako \int \frac{1}{x}\mathrm{d}x=\ln(|x|) emaitza eskuratzeko.
\frac{2x^{3}}{3}+\frac{3x^{2}}{2}-\ln(|x|)+С
F\left(x\right) f\left(x\right)ren jatorrizkoa bada, orduan f\left(x\right)ren jatorrizko guztien multzoa ematen du F\left(x\right)+Ck. Beraz, gehitu C\in \mathrm{R} integrazio-konstantea emaitzari.