Eduki nagusira salto egin
Ebaluatu
Tick mark Image
Diferentziatu x balioarekiko
Tick mark Image

Bilaketaren antzeko arazoak webgunean

Partekatu

\int \left(x^{2}\right)^{3}+6\left(x^{2}\right)^{2}+12x^{2}+8\mathrm{d}x
\left(x^{2}+2\right)^{3} zabaltzeko, erabili Newton-en binomioa \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3}.
\int x^{6}+6\left(x^{2}\right)^{2}+12x^{2}+8\mathrm{d}x
Berretura bat berretzeko, biderkatu berretzaileak haien artean. 6 lortzeko, biderkatu 2 eta 3.
\int x^{6}+6x^{4}+12x^{2}+8\mathrm{d}x
Berretura bat berretzeko, biderkatu berretzaileak haien artean. 4 lortzeko, biderkatu 2 eta 2.
\int x^{6}\mathrm{d}x+\int 6x^{4}\mathrm{d}x+\int 12x^{2}\mathrm{d}x+\int 8\mathrm{d}x
Integratu gehiketa gaiz gai.
\int x^{6}\mathrm{d}x+6\int x^{4}\mathrm{d}x+12\int x^{2}\mathrm{d}x+\int 8\mathrm{d}x
Deskonposatu konstantea gaika.
\frac{x^{7}}{7}+6\int x^{4}\mathrm{d}x+12\int x^{2}\mathrm{d}x+\int 8\mathrm{d}x
Baldin k\neq -1rentzat \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}, ordeztu \int x^{6}\mathrm{d}x \frac{x^{7}}{7}rekin.
\frac{x^{7}}{7}+\frac{6x^{5}}{5}+12\int x^{2}\mathrm{d}x+\int 8\mathrm{d}x
Baldin k\neq -1rentzat \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}, ordeztu \int x^{4}\mathrm{d}x \frac{x^{5}}{5}rekin. Egin 6 bider \frac{x^{5}}{5}.
\frac{x^{7}}{7}+\frac{6x^{5}}{5}+4x^{3}+\int 8\mathrm{d}x
Baldin k\neq -1rentzat \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}, ordeztu \int x^{2}\mathrm{d}x \frac{x^{3}}{3}rekin. Egin 12 bider \frac{x^{3}}{3}.
\frac{x^{7}}{7}+\frac{6x^{5}}{5}+4x^{3}+8x
Aurkitu 8en integrala integral arrunten taulako \int a\mathrm{d}x=ax araua erabiliz.
8x+4x^{3}+\frac{6x^{5}}{5}+\frac{x^{7}}{7}
Sinplifikatu.
8x+4x^{3}+\frac{6x^{5}}{5}+\frac{x^{7}}{7}+С
F\left(x\right) f\left(x\right)ren jatorrizkoa bada, orduan f\left(x\right)ren jatorrizko guztien multzoa ematen du F\left(x\right)+Ck. Beraz, gehitu C\in \mathrm{R} integrazio-konstantea emaitzari.