Ebaluatu
\frac{x^{7}}{7}+\frac{6x^{5}}{5}+4x^{3}+8x+С
Diferentziatu x balioarekiko
\left(x^{2}+2\right)^{3}
Partekatu
Kopiatu portapapeletan
\int \left(x^{2}\right)^{3}+6\left(x^{2}\right)^{2}+12x^{2}+8\mathrm{d}x
\left(x^{2}+2\right)^{3} zabaltzeko, erabili Newton-en binomioa \left(a+b\right)^{3}=a^{3}+3a^{2}b+3ab^{2}+b^{3}.
\int x^{6}+6\left(x^{2}\right)^{2}+12x^{2}+8\mathrm{d}x
Berretura bat berretzeko, biderkatu berretzaileak haien artean. 6 lortzeko, biderkatu 2 eta 3.
\int x^{6}+6x^{4}+12x^{2}+8\mathrm{d}x
Berretura bat berretzeko, biderkatu berretzaileak haien artean. 4 lortzeko, biderkatu 2 eta 2.
\int x^{6}\mathrm{d}x+\int 6x^{4}\mathrm{d}x+\int 12x^{2}\mathrm{d}x+\int 8\mathrm{d}x
Integratu gehiketa gaiz gai.
\int x^{6}\mathrm{d}x+6\int x^{4}\mathrm{d}x+12\int x^{2}\mathrm{d}x+\int 8\mathrm{d}x
Deskonposatu konstantea gaika.
\frac{x^{7}}{7}+6\int x^{4}\mathrm{d}x+12\int x^{2}\mathrm{d}x+\int 8\mathrm{d}x
Baldin k\neq -1rentzat \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}, ordeztu \int x^{6}\mathrm{d}x \frac{x^{7}}{7}rekin.
\frac{x^{7}}{7}+\frac{6x^{5}}{5}+12\int x^{2}\mathrm{d}x+\int 8\mathrm{d}x
Baldin k\neq -1rentzat \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}, ordeztu \int x^{4}\mathrm{d}x \frac{x^{5}}{5}rekin. Egin 6 bider \frac{x^{5}}{5}.
\frac{x^{7}}{7}+\frac{6x^{5}}{5}+4x^{3}+\int 8\mathrm{d}x
Baldin k\neq -1rentzat \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1}, ordeztu \int x^{2}\mathrm{d}x \frac{x^{3}}{3}rekin. Egin 12 bider \frac{x^{3}}{3}.
\frac{x^{7}}{7}+\frac{6x^{5}}{5}+4x^{3}+8x
Aurkitu 8en integrala integral arrunten taulako \int a\mathrm{d}x=ax araua erabiliz.
8x+4x^{3}+\frac{6x^{5}}{5}+\frac{x^{7}}{7}
Sinplifikatu.
8x+4x^{3}+\frac{6x^{5}}{5}+\frac{x^{7}}{7}+С
F\left(x\right) f\left(x\right)ren jatorrizkoa bada, orduan f\left(x\right)ren jatorrizko guztien multzoa ematen du F\left(x\right)+Ck. Beraz, gehitu C\in \mathrm{R} integrazio-konstantea emaitzari.
Adibideak
Ekuazio koadratikoa
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuazio lineala
y = 3x + 4
Aritmetika
699 * 533
Matrizea
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Aldibereko ekuazioa
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentziazioa
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazioa
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Mugak
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}