Eduki nagusira salto egin
Ebaluatu
Tick mark Image
Diferentziatu x balioarekiko
Tick mark Image

Bilaketaren antzeko arazoak webgunean

Partekatu

\frac{\left(x^{1}-3\right)\frac{\mathrm{d}}{\mathrm{d}x}(3x^{2}-1)-\left(3x^{2}-1\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}-3)}{\left(x^{1}-3\right)^{2}}
Bi funtzio diferentziagarri ditugunean, bi funtzioen zatiduraren deribatua da izendatzailea bider zenbakitzailearen deribatua ken zenbakitzailea bider izendatzailearen deribatua, dena izendatzailearen karratuarekin zatituta.
\frac{\left(x^{1}-3\right)\times 2\times 3x^{2-1}-\left(3x^{2}-1\right)x^{1-1}}{\left(x^{1}-3\right)^{2}}
Polinomioaren deribatua haren deribatuen gaien batura da. Gai konstante guztien deribatua 0 da. ax^{n} ekuazioaren deribatua nax^{n-1} da.
\frac{\left(x^{1}-3\right)\times 6x^{1}-\left(3x^{2}-1\right)x^{0}}{\left(x^{1}-3\right)^{2}}
Egin ariketa aritmetikoa.
\frac{x^{1}\times 6x^{1}-3\times 6x^{1}-\left(3x^{2}x^{0}-x^{0}\right)}{\left(x^{1}-3\right)^{2}}
Garatu banaketa-propietatearen bidez.
\frac{6x^{1+1}-3\times 6x^{1}-\left(3x^{2}-x^{0}\right)}{\left(x^{1}-3\right)^{2}}
Berrekizun bereko berreturak biderkatzeko, gehitu haien berretzaileak.
\frac{6x^{2}-18x^{1}-\left(3x^{2}-x^{0}\right)}{\left(x^{1}-3\right)^{2}}
Egin ariketa aritmetikoa.
\frac{6x^{2}-18x^{1}-3x^{2}-\left(-x^{0}\right)}{\left(x^{1}-3\right)^{2}}
Kendu beharrezkoak ez diren parentesiak.
\frac{\left(6-3\right)x^{2}-18x^{1}-\left(-x^{0}\right)}{\left(x^{1}-3\right)^{2}}
Bateratu antzeko gaiak.
\frac{3x^{2}-18x^{1}-\left(-x^{0}\right)}{\left(x^{1}-3\right)^{2}}
Egin 3 ken 6.
\frac{3x^{2}-18x-\left(-x^{0}\right)}{\left(x-3\right)^{2}}
t gaiei dagokienez, t^{1}=t.
\frac{3x^{2}-18x-\left(-1\right)}{\left(x-3\right)^{2}}
t gaiei dagokienez, t^{0}=1. Salbuespena: 0.