Ebatzi: x
x=7y-16
y\neq 3
Ebatzi: y
y=\frac{x+16}{7}
x\neq 5
Grafikoa
Partekatu
Kopiatu portapapeletan
y-3=\left(-\frac{1}{7}x+\frac{5}{7}\right)\left(-2-\left(-1\right)\right)
x aldagaia eta 5 ezin dira izan berdinak, zerorekin zatitzea ez dagoelako definituta. Biderkatu ekuazioaren bi aldeak honekin: x-5.
y-3=\left(-\frac{1}{7}x+\frac{5}{7}\right)\left(-2+1\right)
-1 zenbakiaren aurkakoa 1 da.
y-3=\left(-\frac{1}{7}x+\frac{5}{7}\right)\left(-1\right)
-1 lortzeko, gehitu -2 eta 1.
y-3=\frac{1}{7}x-\frac{5}{7}
Erabili banaketa-propietatea -\frac{1}{7}x+\frac{5}{7} eta -1 biderkatzeko.
\frac{1}{7}x-\frac{5}{7}=y-3
Trukatu aldeak, aldagaiak ezkerraldean egon daitezen.
\frac{1}{7}x=y-3+\frac{5}{7}
Gehitu \frac{5}{7} bi aldeetan.
\frac{1}{7}x=y-\frac{16}{7}
-\frac{16}{7} lortzeko, gehitu -3 eta \frac{5}{7}.
\frac{\frac{1}{7}x}{\frac{1}{7}}=\frac{y-\frac{16}{7}}{\frac{1}{7}}
Biderkatu ekuazioaren bi aldeak 7 balioarekin.
x=\frac{y-\frac{16}{7}}{\frac{1}{7}}
\frac{1}{7} balioarekin zatituz gero, \frac{1}{7} balioarekiko biderketa desegiten da.
x=7y-16
Zatitu y-\frac{16}{7} balioa \frac{1}{7} frakzioarekin, y-\frac{16}{7} balioa \frac{1}{7} frakzioaren frakzio erreziprokoarekin biderkatuz.
x=7y-16\text{, }x\neq 5
x aldagaia eta 5 ezin dira izan berdinak.
y-3=\left(-\frac{1}{7}x+\frac{5}{7}\right)\left(-2-\left(-1\right)\right)
Biderkatu ekuazioaren bi aldeak honekin: x-5.
y-3=\left(-\frac{1}{7}x+\frac{5}{7}\right)\left(-2+1\right)
-1 zenbakiaren aurkakoa 1 da.
y-3=\left(-\frac{1}{7}x+\frac{5}{7}\right)\left(-1\right)
-1 lortzeko, gehitu -2 eta 1.
y-3=\frac{1}{7}x-\frac{5}{7}
Erabili banaketa-propietatea -\frac{1}{7}x+\frac{5}{7} eta -1 biderkatzeko.
y=\frac{1}{7}x-\frac{5}{7}+3
Gehitu 3 bi aldeetan.
y=\frac{1}{7}x+\frac{16}{7}
\frac{16}{7} lortzeko, gehitu -\frac{5}{7} eta 3.
Adibideak
Ekuazio koadratikoa
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuazio lineala
y = 3x + 4
Aritmetika
699 * 533
Matrizea
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Aldibereko ekuazioa
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentziazioa
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazioa
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Mugak
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}