Eduki nagusira salto egin
Ebatzi: x
Tick mark Image
Grafikoa

Bilaketaren antzeko arazoak webgunean

Partekatu

4\left(x^{2}+2\right)-3\left(x^{2}+1\right)=x+5
Biderkatu ekuazioaren bi aldeak 12 balioarekin (3,4,12 balioaren multiplo komunetan txikiena).
4x^{2}+8-3\left(x^{2}+1\right)=x+5
Erabili banaketa-propietatea 4 eta x^{2}+2 biderkatzeko.
4x^{2}+8-3x^{2}-3=x+5
Erabili banaketa-propietatea -3 eta x^{2}+1 biderkatzeko.
x^{2}+8-3=x+5
x^{2} lortzeko, konbinatu 4x^{2} eta -3x^{2}.
x^{2}+5=x+5
5 lortzeko, 8 balioari kendu 3.
x^{2}+5-x=5
Kendu x bi aldeetatik.
x^{2}+5-x-5=0
Kendu 5 bi aldeetatik.
x^{2}-x=0
0 lortzeko, 5 balioari kendu 5.
x\left(x-1\right)=0
Deskonposatu x.
x=0 x=1
Ekuazioaren soluzioak aurkitzeko, ebatzi x=0 eta x-1=0.
4\left(x^{2}+2\right)-3\left(x^{2}+1\right)=x+5
Biderkatu ekuazioaren bi aldeak 12 balioarekin (3,4,12 balioaren multiplo komunetan txikiena).
4x^{2}+8-3\left(x^{2}+1\right)=x+5
Erabili banaketa-propietatea 4 eta x^{2}+2 biderkatzeko.
4x^{2}+8-3x^{2}-3=x+5
Erabili banaketa-propietatea -3 eta x^{2}+1 biderkatzeko.
x^{2}+8-3=x+5
x^{2} lortzeko, konbinatu 4x^{2} eta -3x^{2}.
x^{2}+5=x+5
5 lortzeko, 8 balioari kendu 3.
x^{2}+5-x=5
Kendu x bi aldeetatik.
x^{2}+5-x-5=0
Kendu 5 bi aldeetatik.
x^{2}-x=0
0 lortzeko, 5 balioari kendu 5.
x=\frac{-\left(-1\right)±\sqrt{1}}{2}
Estandarra da ekuazioaren forma: ax^{2}+bx+c=0. Ordeztu 1 balioa a balioarekin, -1 balioa b balioarekin, eta 0 balioa c balioarekin formula koadratikoan (\frac{-b±\sqrt{b^{2}-4ac}}{2a}).
x=\frac{-\left(-1\right)±1}{2}
Atera 1 balioaren erro karratua.
x=\frac{1±1}{2}
-1 zenbakiaren aurkakoa 1 da.
x=\frac{2}{2}
Orain, ebatzi x=\frac{1±1}{2} ekuazioa ± plus denean. Gehitu 1 eta 1.
x=1
Zatitu 2 balioa 2 balioarekin.
x=\frac{0}{2}
Orain, ebatzi x=\frac{1±1}{2} ekuazioa ± minus denean. Egin 1 ken 1.
x=0
Zatitu 0 balioa 2 balioarekin.
x=1 x=0
Ebatzi da ekuazioa.
4\left(x^{2}+2\right)-3\left(x^{2}+1\right)=x+5
Biderkatu ekuazioaren bi aldeak 12 balioarekin (3,4,12 balioaren multiplo komunetan txikiena).
4x^{2}+8-3\left(x^{2}+1\right)=x+5
Erabili banaketa-propietatea 4 eta x^{2}+2 biderkatzeko.
4x^{2}+8-3x^{2}-3=x+5
Erabili banaketa-propietatea -3 eta x^{2}+1 biderkatzeko.
x^{2}+8-3=x+5
x^{2} lortzeko, konbinatu 4x^{2} eta -3x^{2}.
x^{2}+5=x+5
5 lortzeko, 8 balioari kendu 3.
x^{2}+5-x=5
Kendu x bi aldeetatik.
x^{2}+5-x-5=0
Kendu 5 bi aldeetatik.
x^{2}-x=0
0 lortzeko, 5 balioari kendu 5.
x^{2}-x+\left(-\frac{1}{2}\right)^{2}=\left(-\frac{1}{2}\right)^{2}
Zatitu -1 (x gaiaren koefizientea) 2 balioarekin, eta -\frac{1}{2} lortuko duzu. Ondoren, gehitu -\frac{1}{2} balioaren karratua ekuazioaren bi aldeetan. Horrela, ekuazioaren ezkerreko zatia karratu perfektua izango da.
x^{2}-x+\frac{1}{4}=\frac{1}{4}
Egin -\frac{1}{2} ber bi, frakzioaren zenbakitzailea eta izendatzailea ber bi eginez.
\left(x-\frac{1}{2}\right)^{2}=\frac{1}{4}
Atera x^{2}-x+\frac{1}{4} balioaren biderkagaiak. Orokorrean, x^{2}+bx+c karratu perfektua bada, \left(x+\frac{b}{2}\right)^{2} gisa ateratzen dira biderkagaiak.
\sqrt{\left(x-\frac{1}{2}\right)^{2}}=\sqrt{\frac{1}{4}}
Atera ekuazioaren bi aldeen erro karratua.
x-\frac{1}{2}=\frac{1}{2} x-\frac{1}{2}=-\frac{1}{2}
Sinplifikatu.
x=1 x=0
Gehitu \frac{1}{2} ekuazioaren bi aldeetan.