\frac { d y } { d y } d y d x = 1 - \frac { 1 } { \sqrt { 2 } }
Ebatzi: x
x=\frac{\sqrt{2}\left(\sqrt{2}-1\right)}{2yd^{2}}
d\neq 0\text{ and }y\neq 0
Ebatzi: d (complex solution)
d=-\frac{\sqrt{4-2\sqrt{2}}x^{-\frac{1}{2}}y^{-\frac{1}{2}}}{2}
d=\frac{\sqrt{4-2\sqrt{2}}x^{-\frac{1}{2}}y^{-\frac{1}{2}}}{2}\text{, }x\neq 0\text{ and }y\neq 0
Ebatzi: d
d=\frac{\sqrt{\frac{4-2\sqrt{2}}{xy}}}{2}
d=-\frac{\sqrt{\frac{4-2\sqrt{2}}{xy}}}{2}\text{, }\left(x>0\text{ and }y>0\right)\text{ or }\left(y<0\text{ and }x<0\right)
Azterketa
antzeko 5 arazoen antzekoak:
\frac { d y } { d y } d y d x = 1 - \frac { 1 } { \sqrt { 2 } }
Partekatu
Kopiatu portapapeletan
\frac{\mathrm{d}(y)}{\mathrm{d}y}d^{2}yx=1-\frac{1}{\sqrt{2}}
d^{2} lortzeko, biderkatu d eta d.
\frac{\mathrm{d}(y)}{\mathrm{d}y}d^{2}yx=1-\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}
Adierazi \frac{1}{\sqrt{2}} balioaren izendatzailea zenbaki arrazional gisa. Horretarako, egin zenbakitzailea eta izendatzailea bider \sqrt{2}.
\frac{\mathrm{d}(y)}{\mathrm{d}y}d^{2}yx=1-\frac{\sqrt{2}}{2}
\sqrt{2} zenbakiaren karratua 2 da.
2\frac{\mathrm{d}(y)}{\mathrm{d}y}d^{2}yx=2-\sqrt{2}
Biderkatu ekuazioaren bi aldeak honekin: 2.
2yd^{2}x=2-\sqrt{2}
Modu arruntean dago ekuazioa.
\frac{2yd^{2}x}{2yd^{2}}=\frac{2-\sqrt{2}}{2yd^{2}}
Zatitu ekuazioaren bi aldeak 2d^{2}y balioarekin.
x=\frac{2-\sqrt{2}}{2yd^{2}}
2d^{2}y balioarekin zatituz gero, 2d^{2}y balioarekiko biderketa desegiten da.
Adibideak
Ekuazio koadratikoa
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuazio lineala
y = 3x + 4
Aritmetika
699 * 533
Matrizea
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Aldibereko ekuazioa
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentziazioa
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazioa
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Mugak
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}