Eduki nagusira salto egin
Ebaluatu
Tick mark Image
Diferentziatu x balioarekiko
Tick mark Image

Bilaketaren antzeko arazoak webgunean

Partekatu

\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1^{2}}{\left(\sqrt{x+3}\right)^{2}})
\frac{1}{\sqrt{x+3}} berretzeko, berretu zenbakitzailea eta izendatzailea eta, ondoren, egin zatiketa.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{\left(\sqrt{x+3}\right)^{2}})
1 lortzeko, egin 1 ber 2.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{1}{x+3})
x+3 lortzeko, egin \sqrt{x+3} ber 2.
-\left(x^{1}+3\right)^{-1-1}\frac{\mathrm{d}}{\mathrm{d}x}(x^{1}+3)
F bi funtzio diferentziagarrien (f\left(u\right) eta u=g\left(x\right) funtzioen) konposaketa bada, hau da, F\left(x\right)=f\left(g\left(x\right)\right) bada, F-ren deribatua hau izango da: f-ren deribatua u-rekiko, bider g-ren deribatua x-rekiko, hots, \frac{\mathrm{d}}{\mathrm{d}x}(F)\left(x\right)=\frac{\mathrm{d}}{\mathrm{d}x}(f)\left(g\left(x\right)\right)\frac{\mathrm{d}}{\mathrm{d}x}(g)\left(x\right).
-\left(x^{1}+3\right)^{-2}x^{1-1}
Polinomioaren deribatua haren deribatuen gaien batura da. Gai konstante guztien deribatua 0 da. ax^{n} ekuazioaren deribatua nax^{n-1} da.
-x^{0}\left(x^{1}+3\right)^{-2}
Sinplifikatu.
-x^{0}\left(x+3\right)^{-2}
t gaiei dagokienez, t^{1}=t.
-\left(x+3\right)^{-2}
t gaiei dagokienez, t^{0}=1. Salbuespena: 0.