Eduki nagusira salto egin
Ebaluatu
Tick mark Image
Diferentziatu y balioarekiko
Tick mark Image
Grafikoa

Bilaketaren antzeko arazoak webgunean

Partekatu

\frac{8y}{6y\left(-3y+2\right)}
Faktorizatu adierazpenak, faktorizatu gabe badaude.
\frac{4}{3\left(-3y+2\right)}
Sinplifikatu 2y zenbakitzailean eta izendatzailean.
\frac{4}{-9y+6}
Zabaldu adierazpena.
\frac{\left(12y^{1}-18y^{2}\right)\frac{\mathrm{d}}{\mathrm{d}y}(8y^{1})-8y^{1}\frac{\mathrm{d}}{\mathrm{d}y}(12y^{1}-18y^{2})}{\left(12y^{1}-18y^{2}\right)^{2}}
Bi funtzio diferentziagarri ditugunean, bi funtzioen zatiduraren deribatua da izendatzailea bider zenbakitzailearen deribatua ken zenbakitzailea bider izendatzailearen deribatua, dena izendatzailearen karratuarekin zatituta.
\frac{\left(12y^{1}-18y^{2}\right)\times 8y^{1-1}-8y^{1}\left(12y^{1-1}+2\left(-18\right)y^{2-1}\right)}{\left(12y^{1}-18y^{2}\right)^{2}}
Polinomioaren deribatua haren deribatuen gaien batura da. Gai konstante guztien deribatua 0 da. ax^{n} ekuazioaren deribatua nax^{n-1} da.
\frac{\left(12y^{1}-18y^{2}\right)\times 8y^{0}-8y^{1}\left(12y^{0}-36y^{1}\right)}{\left(12y^{1}-18y^{2}\right)^{2}}
Sinplifikatu.
\frac{12y^{1}\times 8y^{0}-18y^{2}\times 8y^{0}-8y^{1}\left(12y^{0}-36y^{1}\right)}{\left(12y^{1}-18y^{2}\right)^{2}}
Egin 12y^{1}-18y^{2} bider 8y^{0}.
\frac{12y^{1}\times 8y^{0}-18y^{2}\times 8y^{0}-\left(8y^{1}\times 12y^{0}+8y^{1}\left(-36\right)y^{1}\right)}{\left(12y^{1}-18y^{2}\right)^{2}}
Egin 8y^{1} bider 12y^{0}-36y^{1}.
\frac{12\times 8y^{1}-18\times 8y^{2}-\left(8\times 12y^{1}+8\left(-36\right)y^{1+1}\right)}{\left(12y^{1}-18y^{2}\right)^{2}}
Berrekizun bereko berreturak biderkatzeko, gehitu haien berretzaileak.
\frac{96y^{1}-144y^{2}-\left(96y^{1}-288y^{2}\right)}{\left(12y^{1}-18y^{2}\right)^{2}}
Sinplifikatu.
\frac{144y^{2}}{\left(12y^{1}-18y^{2}\right)^{2}}
Bateratu antzeko gaiak.
\frac{144y^{2}}{\left(12y-18y^{2}\right)^{2}}
t gaiei dagokienez, t^{1}=t.