Ebaluatu
\frac{51\sqrt{10}}{784}\approx 0.205709389
Azterketa
Arithmetic
antzeko 5 arazoen antzekoak:
\frac { 51 } { 56 } \times \sqrt { \frac { 5 } { 98 } }
Partekatu
Kopiatu portapapeletan
\frac{51}{56}\times \frac{\sqrt{5}}{\sqrt{98}}
Berridatzi zatiketaren erro karratua (\sqrt{\frac{5}{98}}) erro karratuen zatiketa gisa (\frac{\sqrt{5}}{\sqrt{98}}).
\frac{51}{56}\times \frac{\sqrt{5}}{7\sqrt{2}}
98=7^{2}\times 2 faktorea. Berridatzi biderketaren erro karratua (\sqrt{7^{2}\times 2}) \sqrt{7^{2}}\sqrt{2} erro karratuen biderkadura gisa. Atera 7^{2} balioaren erro karratua.
\frac{51}{56}\times \frac{\sqrt{5}\sqrt{2}}{7\left(\sqrt{2}\right)^{2}}
Adierazi \frac{\sqrt{5}}{7\sqrt{2}} balioaren izendatzailea zenbaki arrazional gisa. Horretarako, egin zenbakitzailea eta izendatzailea bider \sqrt{2}.
\frac{51}{56}\times \frac{\sqrt{5}\sqrt{2}}{7\times 2}
\sqrt{2} zenbakiaren karratua 2 da.
\frac{51}{56}\times \frac{\sqrt{10}}{7\times 2}
\sqrt{5} eta \sqrt{2} biderkatzeko, biderkatu erro karratuaren azpiko zenbakiak.
\frac{51}{56}\times \frac{\sqrt{10}}{14}
14 lortzeko, biderkatu 7 eta 2.
\frac{51\sqrt{10}}{56\times 14}
Egin \frac{51}{56} bider \frac{\sqrt{10}}{14}, zenbakitzailea zenbakitzailearekin eta izendatzailea eta izendatzailearekin biderkatuta.
\frac{51\sqrt{10}}{784}
784 lortzeko, biderkatu 56 eta 14.
Adibideak
Ekuazio koadratikoa
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuazio lineala
y = 3x + 4
Aritmetika
699 * 533
Matrizea
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Aldibereko ekuazioa
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentziazioa
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazioa
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Mugak
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}