Eduki nagusira salto egin
Ebaluatu
Tick mark Image

Bilaketaren antzeko arazoak webgunean

Partekatu

\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{\left(2-\sqrt{2}\right)\left(2+\sqrt{2}\right)}-\frac{30}{4\sqrt{3}-\sqrt{18}}-\frac{\sqrt{18}}{3-\sqrt{12}}
Adierazi \frac{4\sqrt{3}}{2-\sqrt{2}} balioaren izendatzailea zenbaki arrazional gisa. Horretarako, egin zenbakitzailea eta izendatzailea bider 2+\sqrt{2}.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2^{2}-\left(\sqrt{2}\right)^{2}}-\frac{30}{4\sqrt{3}-\sqrt{18}}-\frac{\sqrt{18}}{3-\sqrt{12}}
Kasurako: \left(2-\sqrt{2}\right)\left(2+\sqrt{2}\right). Biderketa karratuen desberdintasun bihur daiteke arau hau erabilita: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{4-2}-\frac{30}{4\sqrt{3}-\sqrt{18}}-\frac{\sqrt{18}}{3-\sqrt{12}}
Egin 2 ber bi. Egin \sqrt{2} ber bi.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\frac{30}{4\sqrt{3}-\sqrt{18}}-\frac{\sqrt{18}}{3-\sqrt{12}}
2 lortzeko, 4 balioari kendu 2.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\frac{30}{4\sqrt{3}-3\sqrt{2}}-\frac{\sqrt{18}}{3-\sqrt{12}}
18=3^{2}\times 2 faktorea. Berridatzi biderketaren erro karratua (\sqrt{3^{2}\times 2}) \sqrt{3^{2}}\sqrt{2} erro karratuen biderkadura gisa. Atera 3^{2} balioaren erro karratua.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\frac{30\left(4\sqrt{3}+3\sqrt{2}\right)}{\left(4\sqrt{3}-3\sqrt{2}\right)\left(4\sqrt{3}+3\sqrt{2}\right)}-\frac{\sqrt{18}}{3-\sqrt{12}}
Adierazi \frac{30}{4\sqrt{3}-3\sqrt{2}} balioaren izendatzailea zenbaki arrazional gisa. Horretarako, egin zenbakitzailea eta izendatzailea bider 4\sqrt{3}+3\sqrt{2}.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\frac{30\left(4\sqrt{3}+3\sqrt{2}\right)}{\left(4\sqrt{3}\right)^{2}-\left(-3\sqrt{2}\right)^{2}}-\frac{\sqrt{18}}{3-\sqrt{12}}
Kasurako: \left(4\sqrt{3}-3\sqrt{2}\right)\left(4\sqrt{3}+3\sqrt{2}\right). Biderketa karratuen desberdintasun bihur daiteke arau hau erabilita: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\frac{30\left(4\sqrt{3}+3\sqrt{2}\right)}{4^{2}\left(\sqrt{3}\right)^{2}-\left(-3\sqrt{2}\right)^{2}}-\frac{\sqrt{18}}{3-\sqrt{12}}
Garatu \left(4\sqrt{3}\right)^{2}.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\frac{30\left(4\sqrt{3}+3\sqrt{2}\right)}{16\left(\sqrt{3}\right)^{2}-\left(-3\sqrt{2}\right)^{2}}-\frac{\sqrt{18}}{3-\sqrt{12}}
16 lortzeko, egin 4 ber 2.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\frac{30\left(4\sqrt{3}+3\sqrt{2}\right)}{16\times 3-\left(-3\sqrt{2}\right)^{2}}-\frac{\sqrt{18}}{3-\sqrt{12}}
\sqrt{3} zenbakiaren karratua 3 da.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\frac{30\left(4\sqrt{3}+3\sqrt{2}\right)}{48-\left(-3\sqrt{2}\right)^{2}}-\frac{\sqrt{18}}{3-\sqrt{12}}
48 lortzeko, biderkatu 16 eta 3.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\frac{30\left(4\sqrt{3}+3\sqrt{2}\right)}{48-\left(-3\right)^{2}\left(\sqrt{2}\right)^{2}}-\frac{\sqrt{18}}{3-\sqrt{12}}
Garatu \left(-3\sqrt{2}\right)^{2}.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\frac{30\left(4\sqrt{3}+3\sqrt{2}\right)}{48-9\left(\sqrt{2}\right)^{2}}-\frac{\sqrt{18}}{3-\sqrt{12}}
9 lortzeko, egin -3 ber 2.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\frac{30\left(4\sqrt{3}+3\sqrt{2}\right)}{48-9\times 2}-\frac{\sqrt{18}}{3-\sqrt{12}}
\sqrt{2} zenbakiaren karratua 2 da.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\frac{30\left(4\sqrt{3}+3\sqrt{2}\right)}{48-18}-\frac{\sqrt{18}}{3-\sqrt{12}}
18 lortzeko, biderkatu 9 eta 2.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\frac{30\left(4\sqrt{3}+3\sqrt{2}\right)}{30}-\frac{\sqrt{18}}{3-\sqrt{12}}
30 lortzeko, 48 balioari kendu 18.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-\left(4\sqrt{3}+3\sqrt{2}\right)-\frac{\sqrt{18}}{3-\sqrt{12}}
Sinplifikatu 30 eta 30.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-4\sqrt{3}-3\sqrt{2}-\frac{\sqrt{18}}{3-\sqrt{12}}
4\sqrt{3}+3\sqrt{2} funtzioaren aurkakoa aurkitzeko, bilatu gai bakoitzaren aurkakoa.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-4\sqrt{3}-3\sqrt{2}-\frac{3\sqrt{2}}{3-\sqrt{12}}
18=3^{2}\times 2 faktorea. Berridatzi biderketaren erro karratua (\sqrt{3^{2}\times 2}) \sqrt{3^{2}}\sqrt{2} erro karratuen biderkadura gisa. Atera 3^{2} balioaren erro karratua.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-4\sqrt{3}-3\sqrt{2}-\frac{3\sqrt{2}}{3-2\sqrt{3}}
12=2^{2}\times 3 faktorea. Berridatzi biderketaren erro karratua (\sqrt{2^{2}\times 3}) \sqrt{2^{2}}\sqrt{3} erro karratuen biderkadura gisa. Atera 2^{2} balioaren erro karratua.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-4\sqrt{3}-3\sqrt{2}-\frac{3\sqrt{2}\left(3+2\sqrt{3}\right)}{\left(3-2\sqrt{3}\right)\left(3+2\sqrt{3}\right)}
Adierazi \frac{3\sqrt{2}}{3-2\sqrt{3}} balioaren izendatzailea zenbaki arrazional gisa. Horretarako, egin zenbakitzailea eta izendatzailea bider 3+2\sqrt{3}.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-4\sqrt{3}-3\sqrt{2}-\frac{3\sqrt{2}\left(3+2\sqrt{3}\right)}{3^{2}-\left(-2\sqrt{3}\right)^{2}}
Kasurako: \left(3-2\sqrt{3}\right)\left(3+2\sqrt{3}\right). Biderketa karratuen desberdintasun bihur daiteke arau hau erabilita: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-4\sqrt{3}-3\sqrt{2}-\frac{3\sqrt{2}\left(3+2\sqrt{3}\right)}{9-\left(-2\sqrt{3}\right)^{2}}
9 lortzeko, egin 3 ber 2.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-4\sqrt{3}-3\sqrt{2}-\frac{3\sqrt{2}\left(3+2\sqrt{3}\right)}{9-\left(-2\right)^{2}\left(\sqrt{3}\right)^{2}}
Garatu \left(-2\sqrt{3}\right)^{2}.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-4\sqrt{3}-3\sqrt{2}-\frac{3\sqrt{2}\left(3+2\sqrt{3}\right)}{9-4\left(\sqrt{3}\right)^{2}}
4 lortzeko, egin -2 ber 2.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-4\sqrt{3}-3\sqrt{2}-\frac{3\sqrt{2}\left(3+2\sqrt{3}\right)}{9-4\times 3}
\sqrt{3} zenbakiaren karratua 3 da.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-4\sqrt{3}-3\sqrt{2}-\frac{3\sqrt{2}\left(3+2\sqrt{3}\right)}{9-12}
12 lortzeko, biderkatu 4 eta 3.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-4\sqrt{3}-3\sqrt{2}-\frac{3\sqrt{2}\left(3+2\sqrt{3}\right)}{-3}
-3 lortzeko, 9 balioari kendu 12.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-4\sqrt{3}-3\sqrt{2}-\left(-\sqrt{2}\left(3+2\sqrt{3}\right)\right)
Sinplifikatu -3 eta -3.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}-4\sqrt{3}-3\sqrt{2}+\sqrt{2}\left(3+2\sqrt{3}\right)
-\sqrt{2}\left(3+2\sqrt{3}\right) zenbakiaren aurkakoa \sqrt{2}\left(3+2\sqrt{3}\right) da.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2}+\frac{2\left(-4\sqrt{3}-3\sqrt{2}\right)}{2}+\sqrt{2}\left(3+2\sqrt{3}\right)
Adierazpenak gehitzeko edo kentzeko, zabal itzazu izendatzaileak berdintzeko. Egin -4\sqrt{3}-3\sqrt{2} bider \frac{2}{2}.
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)+2\left(-4\sqrt{3}-3\sqrt{2}\right)}{2}+\sqrt{2}\left(3+2\sqrt{3}\right)
\frac{4\sqrt{3}\left(2+\sqrt{2}\right)}{2} eta \frac{2\left(-4\sqrt{3}-3\sqrt{2}\right)}{2} balioek izendatzaile bera dutenez, zenbakitzaileak batu behar dituzu zatikien batura kalkulatzeko.
\frac{8\sqrt{3}+4\sqrt{6}-8\sqrt{3}-6\sqrt{2}}{2}+\sqrt{2}\left(3+2\sqrt{3}\right)
Egin biderketak 4\sqrt{3}\left(2+\sqrt{2}\right)+2\left(-4\sqrt{3}-3\sqrt{2}\right) zatikian.
\frac{4\sqrt{6}-6\sqrt{2}}{2}+\sqrt{2}\left(3+2\sqrt{3}\right)
Egin kalkuluak hemen: 8\sqrt{3}+4\sqrt{6}-8\sqrt{3}-6\sqrt{2}.
2\sqrt{6}-3\sqrt{2}+\sqrt{2}\left(3+2\sqrt{3}\right)
Zatitu 4\sqrt{6}-6\sqrt{2} ekuazioko gai bakoitza 2 balioarekin, 2\sqrt{6}-3\sqrt{2} lortzeko.
2\sqrt{6}-3\sqrt{2}+3\sqrt{2}+2\sqrt{2}\sqrt{3}
Erabili banaketa-propietatea \sqrt{2} eta 3+2\sqrt{3} biderkatzeko.
2\sqrt{6}-3\sqrt{2}+3\sqrt{2}+2\sqrt{6}
\sqrt{2} eta \sqrt{3} biderkatzeko, biderkatu erro karratuaren azpiko zenbakiak.
2\sqrt{6}+2\sqrt{6}
0 lortzeko, konbinatu -3\sqrt{2} eta 3\sqrt{2}.
4\sqrt{6}
4\sqrt{6} lortzeko, konbinatu 2\sqrt{6} eta 2\sqrt{6}.