Eduki nagusira salto egin
Ebaluatu
Tick mark Image
Diferentziatu x balioarekiko
Tick mark Image
Grafikoa

Bilaketaren antzeko arazoak webgunean

Partekatu

\frac{2x^{2}\left(-3\right)-6x^{2}}{-12x}
x^{2} lortzeko, biderkatu x eta x.
\frac{-6x^{2}-6x^{2}}{-12x}
-6 lortzeko, biderkatu 2 eta -3.
\frac{-12x^{2}}{-12x}
-12x^{2} lortzeko, konbinatu -6x^{2} eta -6x^{2}.
x
Sinplifikatu -12x zenbakitzailean eta izendatzailean.
\frac{-12x^{1}\frac{\mathrm{d}}{\mathrm{d}x}(\left(-6x\right)x^{1}-6x^{2})-\left(\left(-6x\right)x^{1}-6x^{2}\right)\frac{\mathrm{d}}{\mathrm{d}x}(-12x^{1})}{\left(-12x^{1}\right)^{2}}
Bi funtzio diferentziagarri ditugunean, bi funtzioen zatiduraren deribatua da izendatzailea bider zenbakitzailearen deribatua ken zenbakitzailea bider izendatzailearen deribatua, dena izendatzailearen karratuarekin zatituta.
\frac{-12x^{1}\left(\left(-6x\right)x^{1-1}+2\left(-6\right)x^{2-1}\right)-\left(\left(-6x\right)x^{1}-6x^{2}\right)\left(-12\right)x^{1-1}}{\left(-12x^{1}\right)^{2}}
Polinomioaren deribatua haren deribatuen gaien batura da. Gai konstante guztien deribatua 0 da. ax^{n} ekuazioaren deribatua nax^{n-1} da.
\frac{-12x^{1}\left(\left(-6x\right)x^{0}-12x^{1}\right)-\left(\left(-6x\right)x^{1}-6x^{2}\right)\left(-12\right)x^{0}}{\left(-12x^{1}\right)^{2}}
Sinplifikatu.
\frac{-12x^{1}\left(-6x\right)x^{0}-12x^{1}\left(-12\right)x^{1}-\left(\left(-6x\right)x^{1}-6x^{2}\right)\left(-12\right)x^{0}}{\left(-12x^{1}\right)^{2}}
Egin -12x^{1} bider \left(-6x\right)x^{0}-12x^{1}.
\frac{-12x^{1}\left(-6x\right)x^{0}-12x^{1}\left(-12\right)x^{1}-\left(\left(-6x\right)x^{1}\left(-12\right)x^{0}-6x^{2}\left(-12\right)x^{0}\right)}{\left(-12x^{1}\right)^{2}}
Egin \left(-6x\right)x^{1}-6x^{2} bider -12x^{0}.
\frac{-12\left(-6x\right)x^{1}-12\left(-12\right)x^{1+1}-\left(\left(-6x\right)\left(-12\right)x^{1}-6\left(-12\right)x^{2}\right)}{\left(-12x^{1}\right)^{2}}
Berrekizun bereko berreturak biderkatzeko, gehitu haien berretzaileak.
\frac{72xx^{1}+144x^{2}-\left(72xx^{1}+72x^{2}\right)}{\left(-12x^{1}\right)^{2}}
Sinplifikatu.
\frac{72x^{2}}{\left(-12x^{1}\right)^{2}}
Bateratu antzeko gaiak.
\frac{72x^{2}}{\left(-12x\right)^{2}}
t gaiei dagokienez, t^{1}=t.