Ebaluatu
\frac{5x+2}{x\left(x+1\right)}
Diferentziatu x balioarekiko
-\frac{5x^{2}+4x+2}{\left(x\left(x+1\right)\right)^{2}}
Grafikoa
Partekatu
Kopiatu portapapeletan
\frac{2\left(x+1\right)}{x\left(x+1\right)}+\frac{3x}{x\left(x+1\right)}
Adierazpenak gehitzeko edo kentzeko, zabal itzazu izendatzaileak berdintzeko. x eta x+1 ekuazioen multiplo komun txikiena x\left(x+1\right) da. Egin \frac{2}{x} bider \frac{x+1}{x+1}. Egin \frac{3}{x+1} bider \frac{x}{x}.
\frac{2\left(x+1\right)+3x}{x\left(x+1\right)}
\frac{2\left(x+1\right)}{x\left(x+1\right)} eta \frac{3x}{x\left(x+1\right)} balioek izendatzaile bera dutenez, zenbakitzaileak batu behar dituzu zatikien batura kalkulatzeko.
\frac{2x+2+3x}{x\left(x+1\right)}
Egin biderketak 2\left(x+1\right)+3x zatikian.
\frac{5x+2}{x\left(x+1\right)}
Konbinatu hemengo antzeko gaiak: 2x+2+3x.
\frac{5x+2}{x^{2}+x}
Garatu x\left(x+1\right).
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2\left(x+1\right)}{x\left(x+1\right)}+\frac{3x}{x\left(x+1\right)})
Adierazpenak gehitzeko edo kentzeko, zabal itzazu izendatzaileak berdintzeko. x eta x+1 ekuazioen multiplo komun txikiena x\left(x+1\right) da. Egin \frac{2}{x} bider \frac{x+1}{x+1}. Egin \frac{3}{x+1} bider \frac{x}{x}.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2\left(x+1\right)+3x}{x\left(x+1\right)})
\frac{2\left(x+1\right)}{x\left(x+1\right)} eta \frac{3x}{x\left(x+1\right)} balioek izendatzaile bera dutenez, zenbakitzaileak batu behar dituzu zatikien batura kalkulatzeko.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{2x+2+3x}{x\left(x+1\right)})
Egin biderketak 2\left(x+1\right)+3x zatikian.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5x+2}{x\left(x+1\right)})
Konbinatu hemengo antzeko gaiak: 2x+2+3x.
\frac{\mathrm{d}}{\mathrm{d}x}(\frac{5x+2}{x^{2}+x})
Erabili banaketa-propietatea x eta x+1 biderkatzeko.
\frac{\left(x^{2}+x^{1}\right)\frac{\mathrm{d}}{\mathrm{d}x}(5x^{1}+2)-\left(5x^{1}+2\right)\frac{\mathrm{d}}{\mathrm{d}x}(x^{2}+x^{1})}{\left(x^{2}+x^{1}\right)^{2}}
Bi funtzio diferentziagarri ditugunean, bi funtzioen zatiduraren deribatua da izendatzailea bider zenbakitzailearen deribatua ken zenbakitzailea bider izendatzailearen deribatua, dena izendatzailearen karratuarekin zatituta.
\frac{\left(x^{2}+x^{1}\right)\times 5x^{1-1}-\left(5x^{1}+2\right)\left(2x^{2-1}+x^{1-1}\right)}{\left(x^{2}+x^{1}\right)^{2}}
Polinomioaren deribatua haren deribatuen gaien batura da. Gai konstante guztien deribatua 0 da. ax^{n} ekuazioaren deribatua nax^{n-1} da.
\frac{\left(x^{2}+x^{1}\right)\times 5x^{0}-\left(5x^{1}+2\right)\left(2x^{1}+x^{0}\right)}{\left(x^{2}+x^{1}\right)^{2}}
Sinplifikatu.
\frac{x^{2}\times 5x^{0}+x^{1}\times 5x^{0}-\left(5x^{1}+2\right)\left(2x^{1}+x^{0}\right)}{\left(x^{2}+x^{1}\right)^{2}}
Egin x^{2}+x^{1} bider 5x^{0}.
\frac{x^{2}\times 5x^{0}+x^{1}\times 5x^{0}-\left(5x^{1}\times 2x^{1}+5x^{1}x^{0}+2\times 2x^{1}+2x^{0}\right)}{\left(x^{2}+x^{1}\right)^{2}}
Egin 5x^{1}+2 bider 2x^{1}+x^{0}.
\frac{5x^{2}+5x^{1}-\left(5\times 2x^{1+1}+5x^{1}+2\times 2x^{1}+2x^{0}\right)}{\left(x^{2}+x^{1}\right)^{2}}
Berrekizun bereko berreturak biderkatzeko, gehitu haien berretzaileak.
\frac{5x^{2}+5x^{1}-\left(10x^{2}+5x^{1}+4x^{1}+2x^{0}\right)}{\left(x^{2}+x^{1}\right)^{2}}
Sinplifikatu.
\frac{-5x^{2}-4x^{1}-2x^{0}}{\left(x^{2}+x^{1}\right)^{2}}
Bateratu antzeko gaiak.
\frac{-5x^{2}-4x-2x^{0}}{\left(x^{2}+x\right)^{2}}
t gaiei dagokienez, t^{1}=t.
\frac{-5x^{2}-4x-2}{\left(x^{2}+x\right)^{2}}
t gaiei dagokienez, t^{0}=1. Salbuespena: 0.
Adibideak
Ekuazio koadratikoa
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuazio lineala
y = 3x + 4
Aritmetika
699 * 533
Matrizea
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Aldibereko ekuazioa
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentziazioa
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazioa
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Mugak
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}