Ebatzi: x
x=7
Grafikoa
Partekatu
Kopiatu portapapeletan
\frac{1}{25}\times 20+\frac{1}{25}\left(-1\right)x=\frac{4}{25}x-\frac{3}{5}
Erabili banaketa-propietatea \frac{1}{25} eta 20-x biderkatzeko.
\frac{20}{25}+\frac{1}{25}\left(-1\right)x=\frac{4}{25}x-\frac{3}{5}
\frac{20}{25} lortzeko, biderkatu \frac{1}{25} eta 20.
\frac{4}{5}+\frac{1}{25}\left(-1\right)x=\frac{4}{25}x-\frac{3}{5}
Murriztu \frac{20}{25} zatikia gai txikienera, 5 bakanduta eta ezeztatuta.
\frac{4}{5}-\frac{1}{25}x=\frac{4}{25}x-\frac{3}{5}
-\frac{1}{25} lortzeko, biderkatu \frac{1}{25} eta -1.
\frac{4}{5}-\frac{1}{25}x-\frac{4}{25}x=-\frac{3}{5}
Kendu \frac{4}{25}x bi aldeetatik.
\frac{4}{5}-\frac{1}{5}x=-\frac{3}{5}
-\frac{1}{5}x lortzeko, konbinatu -\frac{1}{25}x eta -\frac{4}{25}x.
-\frac{1}{5}x=-\frac{3}{5}-\frac{4}{5}
Kendu \frac{4}{5} bi aldeetatik.
-\frac{1}{5}x=\frac{-3-4}{5}
-\frac{3}{5} eta \frac{4}{5} balioek izendatzaile bera dutenez, zenbakitzaileak kendu behar dituzu zatikien kendura kalkulatzeko.
-\frac{1}{5}x=-\frac{7}{5}
-7 lortzeko, -3 balioari kendu 4.
x=-\frac{7}{5}\left(-5\right)
Biderkatu ekuazioaren bi aldeak -5 balioarekin; hots, -\frac{1}{5} zenbakiaren elkarrekikoarekin.
x=\frac{-7\left(-5\right)}{5}
Adierazi -\frac{7}{5}\left(-5\right) frakzio bakar gisa.
x=\frac{35}{5}
35 lortzeko, biderkatu -7 eta -5.
x=7
7 lortzeko, zatitu 35 5 balioarekin.
Adibideak
Ekuazio koadratikoa
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometria
4 \sin \theta \cos \theta = 2 \sin \theta
Ekuazio lineala
y = 3x + 4
Aritmetika
699 * 533
Matrizea
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Aldibereko ekuazioa
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentziazioa
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integrazioa
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Mugak
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}