Eduki nagusira salto egin
Ebaluatu
Tick mark Image
Faktorizatu
Tick mark Image
Grafikoa

Bilaketaren antzeko arazoak webgunean

Partekatu

\frac{\left(\sqrt{3}\right)^{2}+4x\times \left(\frac{1}{\sqrt{2}}\right)^{2}+3\times 5x\times \left(\frac{2}{\sqrt{3}}\right)^{2}\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
Zenbakiak batekin zatituz gero, berdin gelditzen dira.
\frac{3+4x\times \left(\frac{1}{\sqrt{2}}\right)^{2}+3\times 5x\times \left(\frac{2}{\sqrt{3}}\right)^{2}\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
\sqrt{3} zenbakiaren karratua 3 da.
\frac{3+4x\times \left(\frac{\sqrt{2}}{\left(\sqrt{2}\right)^{2}}\right)^{2}+3\times 5x\times \left(\frac{2}{\sqrt{3}}\right)^{2}\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
Adierazi \frac{1}{\sqrt{2}} balioaren izendatzailea zenbaki arrazional gisa. Horretarako, egin zenbakitzailea eta izendatzailea bider \sqrt{2}.
\frac{3+4x\times \left(\frac{\sqrt{2}}{2}\right)^{2}+3\times 5x\times \left(\frac{2}{\sqrt{3}}\right)^{2}\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
\sqrt{2} zenbakiaren karratua 2 da.
\frac{3+4x\times \frac{\left(\sqrt{2}\right)^{2}}{2^{2}}+3\times 5x\times \left(\frac{2}{\sqrt{3}}\right)^{2}\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
\frac{\sqrt{2}}{2} berretzeko, berretu zenbakitzailea eta izendatzailea eta, ondoren, egin zatiketa.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}x+3\times 5x\times \left(\frac{2}{\sqrt{3}}\right)^{2}\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
Adierazi 4\times \frac{\left(\sqrt{2}\right)^{2}}{2^{2}} frakzio bakar gisa.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}x+15x\times \left(\frac{2}{\sqrt{3}}\right)^{2}\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
15 lortzeko, biderkatu 3 eta 5.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}x+15x\times \left(\frac{2\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\right)^{2}\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
Adierazi \frac{2}{\sqrt{3}} balioaren izendatzailea zenbaki arrazional gisa. Horretarako, egin zenbakitzailea eta izendatzailea bider \sqrt{3}.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}x+15x\times \left(\frac{2\sqrt{3}}{3}\right)^{2}\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
\sqrt{3} zenbakiaren karratua 3 da.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}x+15x\times \frac{\left(2\sqrt{3}\right)^{2}}{3^{2}}\times 0^{2}}{2+2-\left(\sqrt{3}\right)^{2}}
\frac{2\sqrt{3}}{3} berretzeko, berretu zenbakitzailea eta izendatzailea eta, ondoren, egin zatiketa.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}x+15x\times \frac{\left(2\sqrt{3}\right)^{2}}{3^{2}}\times 0}{2+2-\left(\sqrt{3}\right)^{2}}
0 lortzeko, egin 0 ber 2.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}x+0x\times \frac{\left(2\sqrt{3}\right)^{2}}{3^{2}}}{2+2-\left(\sqrt{3}\right)^{2}}
0 lortzeko, biderkatu 15 eta 0.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}x+0x\times \frac{2^{2}\left(\sqrt{3}\right)^{2}}{3^{2}}}{2+2-\left(\sqrt{3}\right)^{2}}
Garatu \left(2\sqrt{3}\right)^{2}.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}x+0x\times \frac{4\left(\sqrt{3}\right)^{2}}{3^{2}}}{2+2-\left(\sqrt{3}\right)^{2}}
4 lortzeko, egin 2 ber 2.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}x+0x\times \frac{4\times 3}{3^{2}}}{2+2-\left(\sqrt{3}\right)^{2}}
\sqrt{3} zenbakiaren karratua 3 da.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}x+0x\times \frac{12}{3^{2}}}{2+2-\left(\sqrt{3}\right)^{2}}
12 lortzeko, biderkatu 4 eta 3.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}x+0x\times \frac{12}{9}}{2+2-\left(\sqrt{3}\right)^{2}}
9 lortzeko, egin 3 ber 2.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}x+0x\times \frac{4}{3}}{2+2-\left(\sqrt{3}\right)^{2}}
Murriztu \frac{12}{9} zatikia gai txikienera, 3 bakanduta eta ezeztatuta.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}x+0x}{2+2-\left(\sqrt{3}\right)^{2}}
0 lortzeko, biderkatu 0 eta \frac{4}{3}.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}x+0}{2+2-\left(\sqrt{3}\right)^{2}}
Edozein zenbaki bider zero zero da.
\frac{3+\frac{4\left(\sqrt{2}\right)^{2}}{2^{2}}x}{2+2-\left(\sqrt{3}\right)^{2}}
3 lortzeko, gehitu 3 eta 0.
\frac{3+\frac{4\times 2}{2^{2}}x}{2+2-\left(\sqrt{3}\right)^{2}}
\sqrt{2} zenbakiaren karratua 2 da.
\frac{3+\frac{8}{2^{2}}x}{2+2-\left(\sqrt{3}\right)^{2}}
8 lortzeko, biderkatu 4 eta 2.
\frac{3+\frac{8}{4}x}{2+2-\left(\sqrt{3}\right)^{2}}
4 lortzeko, egin 2 ber 2.
\frac{3+2x}{2+2-\left(\sqrt{3}\right)^{2}}
2 lortzeko, zatitu 8 4 balioarekin.
\frac{3+2x}{4-\left(\sqrt{3}\right)^{2}}
4 lortzeko, gehitu 2 eta 2.
\frac{3+2x}{4-3}
\sqrt{3} zenbakiaren karratua 3 da.
\frac{3+2x}{1}
1 lortzeko, 4 balioari kendu 3.
3+2x
Zenbakiak batekin zatituz gero, berdin gelditzen dira.