Eduki nagusira salto egin
Ebaluatu
Tick mark Image
Zabaldu
Tick mark Image

Bilaketaren antzeko arazoak webgunean

Partekatu

\left(4-a^{2}-2\right)^{3}-\left(2a^{2}-b+1\right)^{2}+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
Kasurako: \left(2-a\right)\left(2+a\right). Biderketa karratuen desberdintasun bihur daiteke arau hau erabilita: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Egin 2 ber bi.
\left(2-a^{2}\right)^{3}-\left(2a^{2}-b+1\right)^{2}+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
2 lortzeko, 4 balioari kendu 2.
8-12a^{2}+6\left(a^{2}\right)^{2}-\left(a^{2}\right)^{3}-\left(2a^{2}-b+1\right)^{2}+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
\left(2-a^{2}\right)^{3} zabaltzeko, erabili Newton-en binomioa \left(p-q\right)^{3}=p^{3}-3p^{2}q+3pq^{2}-q^{3}.
8-12a^{2}+6a^{4}-\left(a^{2}\right)^{3}-\left(2a^{2}-b+1\right)^{2}+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
Berretura bat berretzeko, biderkatu berretzaileak haien artean. 4 lortzeko, biderkatu 2 eta 2.
8-12a^{2}+6a^{4}-a^{6}-\left(2a^{2}-b+1\right)^{2}+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
Berretura bat berretzeko, biderkatu berretzaileak haien artean. 6 lortzeko, biderkatu 2 eta 3.
8-12a^{2}+6a^{4}-a^{6}-\left(4a^{4}+4a^{2}+b^{2}-4ba^{2}-2b+1\right)+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
Egin 2a^{2}-b+1 ber bi.
8-12a^{2}+6a^{4}-a^{6}-4a^{4}-4a^{2}-b^{2}+4ba^{2}+2b-1+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
4a^{4}+4a^{2}+b^{2}-4ba^{2}-2b+1 funtzioaren aurkakoa aurkitzeko, bilatu gai bakoitzaren aurkakoa.
8-12a^{2}+2a^{4}-a^{6}-4a^{2}-b^{2}+4ba^{2}+2b-1+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
2a^{4} lortzeko, konbinatu 6a^{4} eta -4a^{4}.
8-16a^{2}+2a^{4}-a^{6}-b^{2}+4ba^{2}+2b-1+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
-16a^{2} lortzeko, konbinatu -12a^{2} eta -4a^{2}.
7-16a^{2}+2a^{4}-a^{6}-b^{2}+4ba^{2}+2b+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
7 lortzeko, 8 balioari kendu 1.
7-16a^{2}+2a^{4}-a^{6}-b^{2}+4ba^{2}+2b+a^{2}\left(\left(a^{2}\right)^{2}+8a^{2}+16\right)+\left(b-2a^{2}\right)^{2}
\left(a^{2}+4\right)^{2} zabaltzeko, erabili Newton-en binomioa \left(p+q\right)^{2}=p^{2}+2pq+q^{2}.
7-16a^{2}+2a^{4}-a^{6}-b^{2}+4ba^{2}+2b+a^{2}\left(a^{4}+8a^{2}+16\right)+\left(b-2a^{2}\right)^{2}
Berretura bat berretzeko, biderkatu berretzaileak haien artean. 4 lortzeko, biderkatu 2 eta 2.
7-16a^{2}+2a^{4}-a^{6}-b^{2}+4ba^{2}+2b+a^{6}+8a^{4}+16a^{2}+\left(b-2a^{2}\right)^{2}
Erabili banaketa-propietatea a^{2} eta a^{4}+8a^{2}+16 biderkatzeko.
7-16a^{2}+2a^{4}-b^{2}+4ba^{2}+2b+8a^{4}+16a^{2}+\left(b-2a^{2}\right)^{2}
0 lortzeko, konbinatu -a^{6} eta a^{6}.
7-16a^{2}+10a^{4}-b^{2}+4ba^{2}+2b+16a^{2}+\left(b-2a^{2}\right)^{2}
10a^{4} lortzeko, konbinatu 2a^{4} eta 8a^{4}.
7+10a^{4}-b^{2}+4ba^{2}+2b+\left(b-2a^{2}\right)^{2}
0 lortzeko, konbinatu -16a^{2} eta 16a^{2}.
7+10a^{4}-b^{2}+4ba^{2}+2b+b^{2}-4ba^{2}+4\left(a^{2}\right)^{2}
\left(b-2a^{2}\right)^{2} zabaltzeko, erabili Newton-en binomioa \left(p-q\right)^{2}=p^{2}-2pq+q^{2}.
7+10a^{4}-b^{2}+4ba^{2}+2b+b^{2}-4ba^{2}+4a^{4}
Berretura bat berretzeko, biderkatu berretzaileak haien artean. 4 lortzeko, biderkatu 2 eta 2.
7+10a^{4}+4ba^{2}+2b-4ba^{2}+4a^{4}
0 lortzeko, konbinatu -b^{2} eta b^{2}.
7+10a^{4}+2b+4a^{4}
0 lortzeko, konbinatu 4ba^{2} eta -4ba^{2}.
7+14a^{4}+2b
14a^{4} lortzeko, konbinatu 10a^{4} eta 4a^{4}.
\left(4-a^{2}-2\right)^{3}-\left(2a^{2}-b+1\right)^{2}+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
Kasurako: \left(2-a\right)\left(2+a\right). Biderketa karratuen desberdintasun bihur daiteke arau hau erabilita: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}. Egin 2 ber bi.
\left(2-a^{2}\right)^{3}-\left(2a^{2}-b+1\right)^{2}+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
2 lortzeko, 4 balioari kendu 2.
8-12a^{2}+6\left(a^{2}\right)^{2}-\left(a^{2}\right)^{3}-\left(2a^{2}-b+1\right)^{2}+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
\left(2-a^{2}\right)^{3} zabaltzeko, erabili Newton-en binomioa \left(p-q\right)^{3}=p^{3}-3p^{2}q+3pq^{2}-q^{3}.
8-12a^{2}+6a^{4}-\left(a^{2}\right)^{3}-\left(2a^{2}-b+1\right)^{2}+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
Berretura bat berretzeko, biderkatu berretzaileak haien artean. 4 lortzeko, biderkatu 2 eta 2.
8-12a^{2}+6a^{4}-a^{6}-\left(2a^{2}-b+1\right)^{2}+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
Berretura bat berretzeko, biderkatu berretzaileak haien artean. 6 lortzeko, biderkatu 2 eta 3.
8-12a^{2}+6a^{4}-a^{6}-\left(4a^{4}+4a^{2}+b^{2}-4ba^{2}-2b+1\right)+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
Egin 2a^{2}-b+1 ber bi.
8-12a^{2}+6a^{4}-a^{6}-4a^{4}-4a^{2}-b^{2}+4ba^{2}+2b-1+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
4a^{4}+4a^{2}+b^{2}-4ba^{2}-2b+1 funtzioaren aurkakoa aurkitzeko, bilatu gai bakoitzaren aurkakoa.
8-12a^{2}+2a^{4}-a^{6}-4a^{2}-b^{2}+4ba^{2}+2b-1+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
2a^{4} lortzeko, konbinatu 6a^{4} eta -4a^{4}.
8-16a^{2}+2a^{4}-a^{6}-b^{2}+4ba^{2}+2b-1+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
-16a^{2} lortzeko, konbinatu -12a^{2} eta -4a^{2}.
7-16a^{2}+2a^{4}-a^{6}-b^{2}+4ba^{2}+2b+a^{2}\left(a^{2}+4\right)^{2}+\left(b-2a^{2}\right)^{2}
7 lortzeko, 8 balioari kendu 1.
7-16a^{2}+2a^{4}-a^{6}-b^{2}+4ba^{2}+2b+a^{2}\left(\left(a^{2}\right)^{2}+8a^{2}+16\right)+\left(b-2a^{2}\right)^{2}
\left(a^{2}+4\right)^{2} zabaltzeko, erabili Newton-en binomioa \left(p+q\right)^{2}=p^{2}+2pq+q^{2}.
7-16a^{2}+2a^{4}-a^{6}-b^{2}+4ba^{2}+2b+a^{2}\left(a^{4}+8a^{2}+16\right)+\left(b-2a^{2}\right)^{2}
Berretura bat berretzeko, biderkatu berretzaileak haien artean. 4 lortzeko, biderkatu 2 eta 2.
7-16a^{2}+2a^{4}-a^{6}-b^{2}+4ba^{2}+2b+a^{6}+8a^{4}+16a^{2}+\left(b-2a^{2}\right)^{2}
Erabili banaketa-propietatea a^{2} eta a^{4}+8a^{2}+16 biderkatzeko.
7-16a^{2}+2a^{4}-b^{2}+4ba^{2}+2b+8a^{4}+16a^{2}+\left(b-2a^{2}\right)^{2}
0 lortzeko, konbinatu -a^{6} eta a^{6}.
7-16a^{2}+10a^{4}-b^{2}+4ba^{2}+2b+16a^{2}+\left(b-2a^{2}\right)^{2}
10a^{4} lortzeko, konbinatu 2a^{4} eta 8a^{4}.
7+10a^{4}-b^{2}+4ba^{2}+2b+\left(b-2a^{2}\right)^{2}
0 lortzeko, konbinatu -16a^{2} eta 16a^{2}.
7+10a^{4}-b^{2}+4ba^{2}+2b+b^{2}-4ba^{2}+4\left(a^{2}\right)^{2}
\left(b-2a^{2}\right)^{2} zabaltzeko, erabili Newton-en binomioa \left(p-q\right)^{2}=p^{2}-2pq+q^{2}.
7+10a^{4}-b^{2}+4ba^{2}+2b+b^{2}-4ba^{2}+4a^{4}
Berretura bat berretzeko, biderkatu berretzaileak haien artean. 4 lortzeko, biderkatu 2 eta 2.
7+10a^{4}+4ba^{2}+2b-4ba^{2}+4a^{4}
0 lortzeko, konbinatu -b^{2} eta b^{2}.
7+10a^{4}+2b+4a^{4}
0 lortzeko, konbinatu 4ba^{2} eta -4ba^{2}.
7+14a^{4}+2b
14a^{4} lortzeko, konbinatu 10a^{4} eta 4a^{4}.