Liigu edasi põhisisu juurde
Lahuta teguriteks
Tick mark Image
Arvuta
Tick mark Image

Sarnased probleemid veebiotsingust

Jagama

a+b=-13 ab=1\times 22=22
Jaotage avaldis rühmitamise abil teguriteks. Esmalt tuleb avaldis ümber kirjutada kui z^{2}+az+bz+22. a ja b otsimiseks häälestage süsteem lahendatud.
-1,-22 -2,-11
Kuna ab on positiivne, a ja b on sama märk. Kuna a+b on negatiivne, a ja b on mõlemad negatiivsed. Loetlege kõik täisarvupaarid, mis annavad korrutiseks 22.
-1-22=-23 -2-11=-13
Arvutage iga paari summa.
a=-11 b=-2
Lahendus on paar, mis annab summa -13.
\left(z^{2}-11z\right)+\left(-2z+22\right)
Kirjutagez^{2}-13z+22 ümber kujul \left(z^{2}-11z\right)+\left(-2z+22\right).
z\left(z-11\right)-2\left(z-11\right)
Lahutage z esimesel ja -2 teise rühma.
\left(z-11\right)\left(z-2\right)
Tooge liige z-11 distributiivsusomadust kasutades sulgude ette.
z^{2}-13z+22=0
Ruutpolünoomi saab teguriteks lahutada teisendusega ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), kus x_{1} ja x_{2} on ruutvõrrandi ax^{2}+bx+c=0 lahendid.
z=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\times 22}}{2}
Kõiki võrrandeid, mis on kujul ax^{2}+bx+c=0, saab lahendada ruutvõrrandi valemiga: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ruutvõrrandi valem annab kaks lahendit: ühe, kui ± on liitmine, ja teise, kui see on lahutamine.
z=\frac{-\left(-13\right)±\sqrt{169-4\times 22}}{2}
Tõstke -13 ruutu.
z=\frac{-\left(-13\right)±\sqrt{169-88}}{2}
Korrutage omavahel -4 ja 22.
z=\frac{-\left(-13\right)±\sqrt{81}}{2}
Liitke 169 ja -88.
z=\frac{-\left(-13\right)±9}{2}
Leidke 81 ruutjuur.
z=\frac{13±9}{2}
Arvu -13 vastand on 13.
z=\frac{22}{2}
Nüüd lahendage võrrand z=\frac{13±9}{2}, kui ± on pluss. Liitke 13 ja 9.
z=11
Jagage 22 väärtusega 2.
z=\frac{4}{2}
Nüüd lahendage võrrand z=\frac{13±9}{2}, kui ± on miinus. Lahutage 9 väärtusest 13.
z=2
Jagage 4 väärtusega 2.
z^{2}-13z+22=\left(z-11\right)\left(z-2\right)
Lahutage algne avaldis teguriteks, kasutades valemit ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Asendage x_{1} väärtusega 11 ja x_{2} väärtusega 2.