Lahendage ja leidke x (complex solution)
x=-\frac{91^{\frac{7}{8}}\sqrt[8]{8}\left(-y^{6}+\sqrt[4]{65}+2\right)}{91}
Lahendage ja leidke x
x=-\frac{2^{\frac{3}{8}}\times 91^{\frac{7}{8}}\left(-y^{6}+\sqrt[4]{65}+2\right)}{91}
Lahendage ja leidke y (complex solution)
y\in \frac{2^{\frac{5}{6}}e^{\frac{\pi i}{3}}\sqrt[6]{2^{\frac{5}{8}}\sqrt[8]{91}x+2\sqrt[4]{65}+4}}{2},\frac{2^{\frac{5}{6}}\sqrt[6]{2^{\frac{5}{8}}\sqrt[8]{91}x+2\sqrt[4]{65}+4}}{2},\frac{2^{\frac{5}{6}}e^{\frac{2\pi i}{3}}\sqrt[6]{2^{\frac{5}{8}}\sqrt[8]{91}x+2\sqrt[4]{65}+4}}{2},-\frac{2^{\frac{5}{6}}\sqrt[6]{2^{\frac{5}{8}}\sqrt[8]{91}x+2\sqrt[4]{65}+4}}{2},\frac{2^{\frac{5}{6}}e^{\frac{4\pi i}{3}}\sqrt[6]{2^{\frac{5}{8}}\sqrt[8]{91}x+2\sqrt[4]{65}+4}}{2},\frac{2^{\frac{5}{6}}e^{\frac{5\pi i}{3}}\sqrt[6]{2^{\frac{5}{8}}\sqrt[8]{91}x+2\sqrt[4]{65}+4}}{2}
Lahendage ja leidke y
y=\frac{2^{\frac{5}{6}}\sqrt[6]{2^{\frac{5}{8}}\sqrt[8]{91}x+2\sqrt[4]{65}+4}}{2}
y=-\frac{2^{\frac{5}{6}}\sqrt[6]{2^{\frac{5}{8}}\sqrt[8]{91}x+2\sqrt[4]{65}+4}}{2}\text{, }x\geq -\frac{2^{\frac{3}{8}}\times 91^{\frac{7}{8}}\left(4\sqrt[4]{65}+8\right)}{364}
Graafik
Jagama
Lõikelauale kopeeritud
\left(\frac{91}{8}\right)^{\frac{1}{8}}x+65^{\frac{1}{4}}+2=y^{6}
Vahetage pooled nii, et kõik muutuvad liikmed asuksid vasakul.
\left(\frac{91}{8}\right)^{\frac{1}{8}}x+2=y^{6}-65^{\frac{1}{4}}
Lahutage mõlemast poolest 65^{\frac{1}{4}}.
\left(\frac{91}{8}\right)^{\frac{1}{8}}x=y^{6}-65^{\frac{1}{4}}-2
Lahutage mõlemast poolest 2.
\sqrt[8]{\frac{91}{8}}x=y^{6}-\sqrt[4]{65}-2
Muutke liikmete järjestust.
\frac{\sqrt[8]{\frac{91}{8}}x}{\sqrt[8]{\frac{91}{8}}}=\frac{y^{6}-\sqrt[4]{65}-2}{\sqrt[8]{\frac{91}{8}}}
Jagage mõlemad pooled \sqrt[8]{\frac{91}{8}}-ga.
x=\frac{y^{6}-\sqrt[4]{65}-2}{\sqrt[8]{\frac{91}{8}}}
\sqrt[8]{\frac{91}{8}}-ga jagamine võtab \sqrt[8]{\frac{91}{8}}-ga korrutamise tagasi.
x=\frac{\sqrt[8]{8}\left(y^{6}-\sqrt[4]{65}-2\right)}{\sqrt[8]{91}}
Jagage y^{6}-\sqrt[4]{65}-2 väärtusega \sqrt[8]{\frac{91}{8}}.
\left(\frac{91}{8}\right)^{\frac{1}{8}}x+65^{\frac{1}{4}}+2=y^{6}
Vahetage pooled nii, et kõik muutuvad liikmed asuksid vasakul.
\left(\frac{91}{8}\right)^{\frac{1}{8}}x+2=y^{6}-65^{\frac{1}{4}}
Lahutage mõlemast poolest 65^{\frac{1}{4}}.
\left(\frac{91}{8}\right)^{\frac{1}{8}}x=y^{6}-65^{\frac{1}{4}}-2
Lahutage mõlemast poolest 2.
\sqrt[8]{\frac{91}{8}}x=y^{6}-\sqrt[4]{65}-2
Muutke liikmete järjestust.
\frac{\sqrt[8]{\frac{91}{8}}x}{\sqrt[8]{\frac{91}{8}}}=\frac{y^{6}-\sqrt[4]{65}-2}{\sqrt[8]{\frac{91}{8}}}
Jagage mõlemad pooled \sqrt[8]{\frac{91}{8}}-ga.
x=\frac{y^{6}-\sqrt[4]{65}-2}{\sqrt[8]{\frac{91}{8}}}
\sqrt[8]{\frac{91}{8}}-ga jagamine võtab \sqrt[8]{\frac{91}{8}}-ga korrutamise tagasi.
x=\frac{\sqrt[8]{8}\left(y^{6}-\sqrt[4]{65}-2\right)}{\sqrt[8]{91}}
Jagage y^{6}-\sqrt[4]{65}-2 väärtusega \sqrt[8]{\frac{91}{8}}.
Näited
Ruutvõrrand
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonomeetria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaarne võrrand
y = 3x + 4
Aritmeetika
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samaaegne võrrand
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentseerimine
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integratsioon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Piirid
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}