Lahendage ja leidke a
a=\frac{y^{2}-4}{x^{2}}
x\neq 0\text{ and }y\geq 0
Lahendage ja leidke a (complex solution)
\left\{\begin{matrix}a=\frac{y^{2}-4}{x^{2}}\text{, }&x\neq 0\text{ and }\left(y=0\text{ or }arg(y)<\pi \right)\\a\in \mathrm{C}\text{, }&y=2\text{ and }x=0\end{matrix}\right,
Lahendage ja leidke x (complex solution)
\left\{\begin{matrix}x=-a^{-\frac{1}{2}}\sqrt{y^{2}-4}\text{; }x=a^{-\frac{1}{2}}\sqrt{y^{2}-4}\text{, }&a\neq 0\text{ and }\left(y=0\text{ or }arg(y)<\pi \right)\\x\in \mathrm{C}\text{, }&y=2\text{ and }a=0\end{matrix}\right,
Lahendage ja leidke x
\left\{\begin{matrix}x=\sqrt{\frac{y^{2}-4}{a}}\text{; }x=-\sqrt{\frac{y^{2}-4}{a}}\text{, }&\left(y\geq 0\text{ and }a<0\text{ and }y<2\right)\text{ or }\left(a>0\text{ and }y>2\right)\\x\in \mathrm{R}\text{, }&y=2\text{ and }a=0\end{matrix}\right,
Graafik
Jagama
Lõikelauale kopeeritud
\sqrt{ax^{2}+4}=y
Vahetage pooled nii, et kõik muutuvad liikmed asuksid vasakul.
x^{2}a+4=y^{2}
Tõstke võrrandi mõlemad pooled ruutu.
x^{2}a+4-4=y^{2}-4
Lahutage võrrandi mõlemast poolest 4.
x^{2}a=y^{2}-4
4 lahutamine iseendast annab tulemuseks 0.
\frac{x^{2}a}{x^{2}}=\frac{y^{2}-4}{x^{2}}
Jagage mõlemad pooled x^{2}-ga.
a=\frac{y^{2}-4}{x^{2}}
x^{2}-ga jagamine võtab x^{2}-ga korrutamise tagasi.
Näited
Ruutvõrrand
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonomeetria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaarne võrrand
y = 3x + 4
Aritmeetika
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samaaegne võrrand
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentseerimine
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integratsioon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Piirid
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}