Liigu edasi põhisisu juurde
Lahuta teguriteks
Tick mark Image
Arvuta
Tick mark Image
Graafik

Sarnased probleemid veebiotsingust

Jagama

a+b=-4 ab=1\left(-12\right)=-12
Jaotage avaldis rühmitamise abil teguriteks. Esmalt tuleb avaldis ümber kirjutada kui x^{2}+ax+bx-12. a ja b leidmiseks häälestage lahendatav süsteem.
1,-12 2,-6 3,-4
Kuna ab on negatiivne, a ja b on vastupidiseid märke. Kuna a+b negatiivne, on negatiivne arv suurem kui positiivne väärtus. Loetlege kõik täisarvupaarid, mis annavad korrutiseks -12.
1-12=-11 2-6=-4 3-4=-1
Arvutage iga paari summa.
a=-6 b=2
Lahendus on paar, mis annab summa -4.
\left(x^{2}-6x\right)+\left(2x-12\right)
Kirjutagex^{2}-4x-12 ümber kujul \left(x^{2}-6x\right)+\left(2x-12\right).
x\left(x-6\right)+2\left(x-6\right)
x esimeses ja 2 teises rühmas välja tegur.
\left(x-6\right)\left(x+2\right)
Jagage levinud Termini x-6, kasutades levitava atribuudiga.
x^{2}-4x-12=0
Ruutpolünoomi saab teguriteks lahutada teisendusega ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), kus x_{1} ja x_{2} on ruutvõrrandi ax^{2}+bx+c=0 lahendid.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-12\right)}}{2}
Kõiki võrrandeid, mis on kujul ax^{2}+bx+c=0, saab lahendada ruutvõrrandi valemiga: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ruutvõrrandi valem annab kaks lahendit: ühe, kui ± on liitmine, ja teise, kui see on lahutamine.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-12\right)}}{2}
Tõstke -4 ruutu.
x=\frac{-\left(-4\right)±\sqrt{16+48}}{2}
Korrutage omavahel -4 ja -12.
x=\frac{-\left(-4\right)±\sqrt{64}}{2}
Liitke 16 ja 48.
x=\frac{-\left(-4\right)±8}{2}
Leidke 64 ruutjuur.
x=\frac{4±8}{2}
Arvu -4 vastand on 4.
x=\frac{12}{2}
Nüüd lahendage võrrand x=\frac{4±8}{2}, kui ± on pluss. Liitke 4 ja 8.
x=6
Jagage 12 väärtusega 2.
x=-\frac{4}{2}
Nüüd lahendage võrrand x=\frac{4±8}{2}, kui ± on miinus. Lahutage 8 väärtusest 4.
x=-2
Jagage -4 väärtusega 2.
x^{2}-4x-12=\left(x-6\right)\left(x-\left(-2\right)\right)
Tegurdage originaalavaldis võrrandi ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) abil. Asendage x_{1} väärtusega 6 ja x_{2} väärtusega -2.
x^{2}-4x-12=\left(x-6\right)\left(x+2\right)
Lihtsustage kõik valemid, mis on kujul p-\left(-q\right) kujule p+q.