Lahuta teguriteks
\left(x-6\right)\left(x+2\right)
Arvuta
\left(x-6\right)\left(x+2\right)
Graafik
Viktoriin
Polynomial
x^2-4x-12
Jagama
Lõikelauale kopeeritud
a+b=-4 ab=1\left(-12\right)=-12
Jaotage avaldis rühmitamise abil teguriteks. Esmalt tuleb avaldis ümber kirjutada kui x^{2}+ax+bx-12. a ja b otsimiseks häälestage süsteem lahendatud.
1,-12 2,-6 3,-4
Kuna ab on negatiivne, a ja b on vastand märki. Kuna a+b on negatiivne, on negatiivne arv suurem kui positiivne väärtus. Loetlege kõik täisarvupaarid, mis annavad korrutiseks -12.
1-12=-11 2-6=-4 3-4=-1
Arvutage iga paari summa.
a=-6 b=2
Lahendus on paar, mis annab summa -4.
\left(x^{2}-6x\right)+\left(2x-12\right)
Kirjutagex^{2}-4x-12 ümber kujul \left(x^{2}-6x\right)+\left(2x-12\right).
x\left(x-6\right)+2\left(x-6\right)
Lahutage x esimesel ja 2 teise rühma.
\left(x-6\right)\left(x+2\right)
Tooge liige x-6 distributiivsusomadust kasutades sulgude ette.
x^{2}-4x-12=0
Ruutpolünoomi saab teguriteks lahutada teisendusega ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), kus x_{1} ja x_{2} on ruutvõrrandi ax^{2}+bx+c=0 lahendid.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\left(-12\right)}}{2}
Kõiki võrrandeid, mis on kujul ax^{2}+bx+c=0, saab lahendada ruutvõrrandi valemiga: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ruutvõrrandi valem annab kaks lahendit: ühe, kui ± on liitmine, ja teise, kui see on lahutamine.
x=\frac{-\left(-4\right)±\sqrt{16-4\left(-12\right)}}{2}
Tõstke -4 ruutu.
x=\frac{-\left(-4\right)±\sqrt{16+48}}{2}
Korrutage omavahel -4 ja -12.
x=\frac{-\left(-4\right)±\sqrt{64}}{2}
Liitke 16 ja 48.
x=\frac{-\left(-4\right)±8}{2}
Leidke 64 ruutjuur.
x=\frac{4±8}{2}
Arvu -4 vastand on 4.
x=\frac{12}{2}
Nüüd lahendage võrrand x=\frac{4±8}{2}, kui ± on pluss. Liitke 4 ja 8.
x=6
Jagage 12 väärtusega 2.
x=-\frac{4}{2}
Nüüd lahendage võrrand x=\frac{4±8}{2}, kui ± on miinus. Lahutage 8 väärtusest 4.
x=-2
Jagage -4 väärtusega 2.
x^{2}-4x-12=\left(x-6\right)\left(x-\left(-2\right)\right)
Lahutage algne avaldis teguriteks, kasutades valemit ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Asendage x_{1} väärtusega 6 ja x_{2} väärtusega -2.
x^{2}-4x-12=\left(x-6\right)\left(x+2\right)
Lihtsustage kõik valemid, mis on kujul p-\left(-q\right) kujule p+q.
Näited
Ruutvõrrand
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonomeetria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaarne võrrand
y = 3x + 4
Aritmeetika
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samaaegne võrrand
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentseerimine
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integratsioon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Piirid
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}