Liigu edasi põhisisu juurde
Lahuta teguriteks
Tick mark Image
Arvuta
Tick mark Image
Graafik

Sarnased probleemid veebiotsingust

Jagama

a+b=-1 ab=1\left(-6\right)=-6
Jaotage avaldis rühmitamise abil teguriteks. Esmalt tuleb avaldis ümber kirjutada kui x^{2}+ax+bx-6. a ja b leidmiseks häälestage lahendatav süsteem.
1,-6 2,-3
Kuna ab on negatiivne, a ja b on vastupidiseid märke. Kuna a+b negatiivne, on negatiivne arv suurem kui positiivne väärtus. Loetlege kõik täisarvupaarid, mis annavad korrutiseks -6.
1-6=-5 2-3=-1
Arvutage iga paari summa.
a=-3 b=2
Lahendus on paar, mis annab summa -1.
\left(x^{2}-3x\right)+\left(2x-6\right)
Kirjutagex^{2}-x-6 ümber kujul \left(x^{2}-3x\right)+\left(2x-6\right).
x\left(x-3\right)+2\left(x-3\right)
x esimeses ja 2 teises rühmas välja tegur.
\left(x-3\right)\left(x+2\right)
Jagage levinud Termini x-3, kasutades levitava atribuudiga.
x^{2}-x-6=0
Ruutpolünoomi saab teguriteks lahutada teisendusega ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), kus x_{1} ja x_{2} on ruutvõrrandi ax^{2}+bx+c=0 lahendid.
x=\frac{-\left(-1\right)±\sqrt{1-4\left(-6\right)}}{2}
Kõiki võrrandeid, mis on kujul ax^{2}+bx+c=0, saab lahendada ruutvõrrandi valemiga: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ruutvõrrandi valem annab kaks lahendit: ühe, kui ± on liitmine, ja teise, kui see on lahutamine.
x=\frac{-\left(-1\right)±\sqrt{1+24}}{2}
Korrutage omavahel -4 ja -6.
x=\frac{-\left(-1\right)±\sqrt{25}}{2}
Liitke 1 ja 24.
x=\frac{-\left(-1\right)±5}{2}
Leidke 25 ruutjuur.
x=\frac{1±5}{2}
Arvu -1 vastand on 1.
x=\frac{6}{2}
Nüüd lahendage võrrand x=\frac{1±5}{2}, kui ± on pluss. Liitke 1 ja 5.
x=3
Jagage 6 väärtusega 2.
x=-\frac{4}{2}
Nüüd lahendage võrrand x=\frac{1±5}{2}, kui ± on miinus. Lahutage 5 väärtusest 1.
x=-2
Jagage -4 väärtusega 2.
x^{2}-x-6=\left(x-3\right)\left(x-\left(-2\right)\right)
Tegurdage originaalavaldis võrrandi ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) abil. Asendage x_{1} väärtusega 3 ja x_{2} väärtusega -2.
x^{2}-x-6=\left(x-3\right)\left(x+2\right)
Lihtsustage kõik valemid, mis on kujul p-\left(-q\right) kujule p+q.