Lahendage ja leidke x
x=-2
x=1
x=3
x=-4
Graafik
Viktoriin
Polynomial
5 probleemid, mis on sarnased:
x ^ { 2 } + x + 1 + \frac { 11 } { x ^ { 2 } + x - 1 } = 14
Jagama
Lõikelauale kopeeritud
\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)x^{2}+\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)x+\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)+11=14\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)
Korrutage võrrandi mõlemad pooled \left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)-ga.
\left(x+\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)x^{2}+\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)x+\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)+11=14\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)
Avaldise "-\frac{1}{2}\sqrt{5}-\frac{1}{2}" vastandi leidmiseks tuleb leida iga liikme vastand.
\left(x+\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)\left(x-\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)x^{2}+\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)x+\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)+11=14\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)
Avaldise "\frac{1}{2}\sqrt{5}-\frac{1}{2}" vastandi leidmiseks tuleb leida iga liikme vastand.
\left(x^{2}+x-\frac{1}{4}\left(\sqrt{5}\right)^{2}+\frac{1}{4}\right)x^{2}+\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)x+\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)+11=14\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)
Kasutage distributiivsusomadust, et korrutada x+\frac{1}{2}\sqrt{5}+\frac{1}{2} ja x-\frac{1}{2}\sqrt{5}+\frac{1}{2}, ning koondage sarnased liikmed.
\left(x^{2}+x-\frac{1}{4}\times 5+\frac{1}{4}\right)x^{2}+\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)x+\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)+11=14\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)
\sqrt{5} ruut on 5.
\left(x^{2}+x-\frac{5}{4}+\frac{1}{4}\right)x^{2}+\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)x+\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)+11=14\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)
Korrutage -\frac{1}{4} ja 5, et leida -\frac{5}{4}.
\left(x^{2}+x-1\right)x^{2}+\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)x+\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)+11=14\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)
Liitke -\frac{5}{4} ja \frac{1}{4}, et leida -1.
x^{4}+x^{3}-x^{2}+\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)x+\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)+11=14\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)
Kasutage distributiivsusomadust, et korrutada x^{2}+x-1 ja x^{2}.
x^{4}+x^{3}-x^{2}+\left(x+\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)x+\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)+11=14\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)
Avaldise "-\frac{1}{2}\sqrt{5}-\frac{1}{2}" vastandi leidmiseks tuleb leida iga liikme vastand.
x^{4}+x^{3}-x^{2}+\left(x+\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)\left(x-\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)x+\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)+11=14\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)
Avaldise "\frac{1}{2}\sqrt{5}-\frac{1}{2}" vastandi leidmiseks tuleb leida iga liikme vastand.
x^{4}+x^{3}-x^{2}+\left(x^{2}+x-\frac{1}{4}\left(\sqrt{5}\right)^{2}+\frac{1}{4}\right)x+\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)+11=14\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)
Kasutage distributiivsusomadust, et korrutada x+\frac{1}{2}\sqrt{5}+\frac{1}{2} ja x-\frac{1}{2}\sqrt{5}+\frac{1}{2}, ning koondage sarnased liikmed.
x^{4}+x^{3}-x^{2}+\left(x^{2}+x-\frac{1}{4}\times 5+\frac{1}{4}\right)x+\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)+11=14\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)
\sqrt{5} ruut on 5.
x^{4}+x^{3}-x^{2}+\left(x^{2}+x-\frac{5}{4}+\frac{1}{4}\right)x+\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)+11=14\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)
Korrutage -\frac{1}{4} ja 5, et leida -\frac{5}{4}.
x^{4}+x^{3}-x^{2}+\left(x^{2}+x-1\right)x+\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)+11=14\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)
Liitke -\frac{5}{4} ja \frac{1}{4}, et leida -1.
x^{4}+x^{3}-x^{2}+x^{3}+x^{2}-x+\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)+11=14\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)
Kasutage distributiivsusomadust, et korrutada x^{2}+x-1 ja x.
x^{4}+2x^{3}-x^{2}+x^{2}-x+\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)+11=14\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)
Kombineerige x^{3} ja x^{3}, et leida 2x^{3}.
x^{4}+2x^{3}-x+\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)+11=14\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)
Kombineerige -x^{2} ja x^{2}, et leida 0.
x^{4}+2x^{3}-x+\left(x+\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)+11=14\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)
Avaldise "-\frac{1}{2}\sqrt{5}-\frac{1}{2}" vastandi leidmiseks tuleb leida iga liikme vastand.
x^{4}+2x^{3}-x+\left(x+\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)\left(x-\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)+11=14\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)
Avaldise "\frac{1}{2}\sqrt{5}-\frac{1}{2}" vastandi leidmiseks tuleb leida iga liikme vastand.
x^{4}+2x^{3}-x+x^{2}+x-\frac{1}{4}\left(\sqrt{5}\right)^{2}+\frac{1}{4}+11=14\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)
Kasutage distributiivsusomadust, et korrutada x+\frac{1}{2}\sqrt{5}+\frac{1}{2} ja x-\frac{1}{2}\sqrt{5}+\frac{1}{2}, ning koondage sarnased liikmed.
x^{4}+2x^{3}-x+x^{2}+x-\frac{1}{4}\times 5+\frac{1}{4}+11=14\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)
\sqrt{5} ruut on 5.
x^{4}+2x^{3}-x+x^{2}+x-\frac{5}{4}+\frac{1}{4}+11=14\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)
Korrutage -\frac{1}{4} ja 5, et leida -\frac{5}{4}.
x^{4}+2x^{3}-x+x^{2}+x-1+11=14\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)
Liitke -\frac{5}{4} ja \frac{1}{4}, et leida -1.
x^{4}+2x^{3}+x^{2}-1+11=14\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)
Kombineerige -x ja x, et leida 0.
x^{4}+2x^{3}+x^{2}+10=14\left(x-\left(-\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)
Liitke -1 ja 11, et leida 10.
x^{4}+2x^{3}+x^{2}+10=14\left(x+\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)\left(x-\left(\frac{1}{2}\sqrt{5}-\frac{1}{2}\right)\right)
Avaldise "-\frac{1}{2}\sqrt{5}-\frac{1}{2}" vastandi leidmiseks tuleb leida iga liikme vastand.
x^{4}+2x^{3}+x^{2}+10=14\left(x+\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)\left(x-\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)
Avaldise "\frac{1}{2}\sqrt{5}-\frac{1}{2}" vastandi leidmiseks tuleb leida iga liikme vastand.
x^{4}+2x^{3}+x^{2}+10=\left(14x+7\sqrt{5}+7\right)\left(x-\frac{1}{2}\sqrt{5}+\frac{1}{2}\right)
Kasutage distributiivsusomadust, et korrutada 14 ja x+\frac{1}{2}\sqrt{5}+\frac{1}{2}.
x^{4}+2x^{3}+x^{2}+10=14x^{2}+14x-\frac{7}{2}\left(\sqrt{5}\right)^{2}+\frac{7}{2}
Kasutage distributiivsusomadust, et korrutada 14x+7\sqrt{5}+7 ja x-\frac{1}{2}\sqrt{5}+\frac{1}{2}, ning koondage sarnased liikmed.
x^{4}+2x^{3}+x^{2}+10=14x^{2}+14x-\frac{7}{2}\times 5+\frac{7}{2}
\sqrt{5} ruut on 5.
x^{4}+2x^{3}+x^{2}+10=14x^{2}+14x-\frac{35}{2}+\frac{7}{2}
Korrutage -\frac{7}{2} ja 5, et leida -\frac{35}{2}.
x^{4}+2x^{3}+x^{2}+10=14x^{2}+14x-14
Liitke -\frac{35}{2} ja \frac{7}{2}, et leida -14.
x^{4}+2x^{3}+x^{2}+10-14x^{2}=14x-14
Lahutage mõlemast poolest 14x^{2}.
x^{4}+2x^{3}-13x^{2}+10=14x-14
Kombineerige x^{2} ja -14x^{2}, et leida -13x^{2}.
x^{4}+2x^{3}-13x^{2}+10-14x=-14
Lahutage mõlemast poolest 14x.
x^{4}+2x^{3}-13x^{2}+10-14x+14=0
Liitke 14 mõlemale poolele.
x^{4}+2x^{3}-13x^{2}+24-14x=0
Liitke 10 ja 14, et leida 24.
x^{4}+2x^{3}-13x^{2}-14x+24=0
Korraldage võrrand ümber, et viia see standardkujule. Järjestage liikmed astmete järgi (kõrgemast madalamani).
±24,±12,±8,±6,±4,±3,±2,±1
Ratsionaalarvuliste nullkohtade teoreemi järgi on kõik polünoomi ratsionaalarvulised nullkohad kujul \frac{p}{q}, kus p jagab konstantliikme 24 ja q jagab pealiikme kordaja 1. Loetlege kõik kandidaadid \frac{p}{q}.
x=1
Ühe sellise juure leidmiseks proovige kõiki täisarvulisi väärtusi alates väikseimast (absoluutväärtuse alusel). Kui täisarvulisi juuri ei leita, proovige murdarve.
x^{3}+3x^{2}-10x-24=0
Teoreem korral x-k on polünoomi liikmete iga juure k. Jagage x^{4}+2x^{3}-13x^{2}-14x+24 väärtusega x-1, et leida x^{3}+3x^{2}-10x-24. Lahendage võrrand, mille tulemus võrdub 0.
±24,±12,±8,±6,±4,±3,±2,±1
Ratsionaalarvuliste nullkohtade teoreemi järgi on kõik polünoomi ratsionaalarvulised nullkohad kujul \frac{p}{q}, kus p jagab konstantliikme -24 ja q jagab pealiikme kordaja 1. Loetlege kõik kandidaadid \frac{p}{q}.
x=-2
Ühe sellise juure leidmiseks proovige kõiki täisarvulisi väärtusi alates väikseimast (absoluutväärtuse alusel). Kui täisarvulisi juuri ei leita, proovige murdarve.
x^{2}+x-12=0
Teoreem korral x-k on polünoomi liikmete iga juure k. Jagage x^{3}+3x^{2}-10x-24 väärtusega x+2, et leida x^{2}+x-12. Lahendage võrrand, mille tulemus võrdub 0.
x=\frac{-1±\sqrt{1^{2}-4\times 1\left(-12\right)}}{2}
Kõik võrrandid, mis on kujul ax^{2}+bx+c=0, saab lahendada ruutvõrrandi valemiga: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Asendage a ruutvõrrandis väärtusega 1, b väärtusega 1 ja c väärtusega -12.
x=\frac{-1±7}{2}
Tehke arvutustehted.
x=-4 x=3
Lahendage võrrand x^{2}+x-12=0, kui ± on pluss ja kui ± on miinus.
x=1 x=-2 x=-4 x=3
Loetlege kõik leitud lahendused.
Näited
Ruutvõrrand
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonomeetria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaarne võrrand
y = 3x + 4
Aritmeetika
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samaaegne võrrand
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentseerimine
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integratsioon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Piirid
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}