Liigu edasi põhisisu juurde
Lahendage ja leidke x
Tick mark Image
Graafik

Sarnased probleemid veebiotsingust

Jagama

x^{2}+3x+21=22
Kõiki võrrandeid, mis on kujul ax^{2}+bx+c=0, saab lahendada ruutvõrrandi valemiga: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ruutvõrrandi valem annab kaks lahendit: ühe, kui ± on liitmine, ja teise, kui see on lahutamine.
x^{2}+3x+21-22=22-22
Lahutage võrrandi mõlemast poolest 22.
x^{2}+3x+21-22=0
22 lahutamine iseendast annab tulemuseks 0.
x^{2}+3x-1=0
Lahutage 22 väärtusest 21.
x=\frac{-3±\sqrt{3^{2}-4\left(-1\right)}}{2}
See võrrand on standardkujul: ax^{2}+bx+c=0. Asendage ruutvõrrandis \frac{-b±\sqrt{b^{2}-4ac}}{2a} väärtus a väärtusega 1, b väärtusega 3 ja c väärtusega -1.
x=\frac{-3±\sqrt{9-4\left(-1\right)}}{2}
Tõstke 3 ruutu.
x=\frac{-3±\sqrt{9+4}}{2}
Korrutage omavahel -4 ja -1.
x=\frac{-3±\sqrt{13}}{2}
Liitke 9 ja 4.
x=\frac{\sqrt{13}-3}{2}
Nüüd lahendage võrrand x=\frac{-3±\sqrt{13}}{2}, kui ± on pluss. Liitke -3 ja \sqrt{13}.
x=\frac{-\sqrt{13}-3}{2}
Nüüd lahendage võrrand x=\frac{-3±\sqrt{13}}{2}, kui ± on miinus. Lahutage \sqrt{13} väärtusest -3.
x=\frac{\sqrt{13}-3}{2} x=\frac{-\sqrt{13}-3}{2}
Võrrand on nüüd lahendatud.
x^{2}+3x+21=22
Ruutvõrrandite (nagu see siin) lahendamiseks tuleb mõlemad pooled ruutu tõsta. Ruutu tõstmiseks peab võrrand olema esmalt kujul x^{2}+bx=c.
x^{2}+3x+21-21=22-21
Lahutage võrrandi mõlemast poolest 21.
x^{2}+3x=22-21
21 lahutamine iseendast annab tulemuseks 0.
x^{2}+3x=1
Lahutage 21 väärtusest 22.
x^{2}+3x+\left(\frac{3}{2}\right)^{2}=1+\left(\frac{3}{2}\right)^{2}
Jagage liikme x kordaja 3 2-ga, et leida \frac{3}{2}. Seejärel liitke \frac{3}{2} ruut võrrandi mõlemale poolele. Selle tehtega saab võrrandi vasakust poolest täisruut.
x^{2}+3x+\frac{9}{4}=1+\frac{9}{4}
Tõstke \frac{3}{2} ruutu, tõstes ruutu nii murru lugeja kui ka nimetaja.
x^{2}+3x+\frac{9}{4}=\frac{13}{4}
Liitke 1 ja \frac{9}{4}.
\left(x+\frac{3}{2}\right)^{2}=\frac{13}{4}
Lahutage x^{2}+3x+\frac{9}{4}. Kui x^{2}+bx+c on üldiselt täiuslik ruut, saab selle alati teguriteks lahutada kui \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{2}\right)^{2}}=\sqrt{\frac{13}{4}}
Leidke võrrandi mõlema poole ruutjuur.
x+\frac{3}{2}=\frac{\sqrt{13}}{2} x+\frac{3}{2}=-\frac{\sqrt{13}}{2}
Lihtsustage.
x=\frac{\sqrt{13}-3}{2} x=\frac{-\sqrt{13}-3}{2}
Lahutage võrrandi mõlemast poolest \frac{3}{2}.