Lahuta teguriteks
\left(r-5\right)^{2}
Arvuta
\left(r-5\right)^{2}
Jagama
Lõikelauale kopeeritud
a+b=-10 ab=1\times 25=25
Jaotage avaldis rühmitamise abil teguriteks. Esmalt tuleb avaldis ümber kirjutada kui r^{2}+ar+br+25. a ja b otsimiseks häälestage süsteem lahendatud.
-1,-25 -5,-5
Kuna ab on positiivne, a ja b on sama märk. Kuna a+b on negatiivne, a ja b on mõlemad negatiivsed. Loetlege kõik täisarvupaarid, mis annavad korrutiseks 25.
-1-25=-26 -5-5=-10
Arvutage iga paari summa.
a=-5 b=-5
Lahendus on paar, mis annab summa -10.
\left(r^{2}-5r\right)+\left(-5r+25\right)
Kirjutager^{2}-10r+25 ümber kujul \left(r^{2}-5r\right)+\left(-5r+25\right).
r\left(r-5\right)-5\left(r-5\right)
Lahutage r esimesel ja -5 teise rühma.
\left(r-5\right)\left(r-5\right)
Tooge liige r-5 distributiivsusomadust kasutades sulgude ette.
\left(r-5\right)^{2}
Kirjutage ümber kaksliikme ruuduna.
factor(r^{2}-10r+25)
Sellel kolmliikmel on ruutkolmliikme kuju (võimalik, et korrutatud ühisteguriga). Ruutkolmliikmeid saab tegurdada pea- ja järelliikme ruutjuure leidmise kaudu.
\sqrt{25}=5
Leidke järelliikme 25 ruutjuur.
\left(r-5\right)^{2}
Ruutkolmliige on sellise kaksliikme ruut, mis on pealiikme ja järelliikme ruutjuurte summa või vahe ning mille märgi määrab ära ruutkolmliikme keskmise liikme märk.
r^{2}-10r+25=0
Ruutpolünoomi saab teguriteks lahutada teisendusega ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), kus x_{1} ja x_{2} on ruutvõrrandi ax^{2}+bx+c=0 lahendid.
r=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 25}}{2}
Kõiki võrrandeid, mis on kujul ax^{2}+bx+c=0, saab lahendada ruutvõrrandi valemiga: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ruutvõrrandi valem annab kaks lahendit: ühe, kui ± on liitmine, ja teise, kui see on lahutamine.
r=\frac{-\left(-10\right)±\sqrt{100-4\times 25}}{2}
Tõstke -10 ruutu.
r=\frac{-\left(-10\right)±\sqrt{100-100}}{2}
Korrutage omavahel -4 ja 25.
r=\frac{-\left(-10\right)±\sqrt{0}}{2}
Liitke 100 ja -100.
r=\frac{-\left(-10\right)±0}{2}
Leidke 0 ruutjuur.
r=\frac{10±0}{2}
Arvu -10 vastand on 10.
r^{2}-10r+25=\left(r-5\right)\left(r-5\right)
Lahutage algne avaldis teguriteks, kasutades valemit ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Asendage x_{1} väärtusega 5 ja x_{2} väärtusega 5.
Näited
Ruutvõrrand
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonomeetria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaarne võrrand
y = 3x + 4
Aritmeetika
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samaaegne võrrand
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentseerimine
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integratsioon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Piirid
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}