Liigu edasi põhisisu juurde
Lahuta teguriteks
Tick mark Image
Arvuta
Tick mark Image
Graafik

Sarnased probleemid veebiotsingust

Jagama

\left(x-5\right)\left(-x^{2}-2x+3\right)
Ratsionaalarvuliste nullkohtade teoreemi järgi on kõik polünoomi ratsionaalarvulised nullkohad kujul \frac{p}{q}, kus p jagab konstantliikme -15 ja q jagab pealiikme kordaja -1. Üks (juur on 5). Saate polünoomi liikmete selle jagades, kui x-5.
a+b=-2 ab=-3=-3
Mõelge valemile -x^{2}-2x+3. Jaotage avaldis rühmitamise abil teguriteks. Esmalt tuleb avaldis ümber kirjutada kui -x^{2}+ax+bx+3. a ja b otsimiseks häälestage süsteem lahendatud.
a=1 b=-3
Kuna ab on negatiivne, a ja b on vastand märki. Kuna a+b on negatiivne, on negatiivne arv suurem kui positiivne väärtus. Ainult siis, kui paar on süsteemi lahendus.
\left(-x^{2}+x\right)+\left(-3x+3\right)
Kirjutage-x^{2}-2x+3 ümber kujul \left(-x^{2}+x\right)+\left(-3x+3\right).
x\left(-x+1\right)+3\left(-x+1\right)
Lahutage x esimesel ja 3 teise rühma.
\left(-x+1\right)\left(x+3\right)
Tooge liige -x+1 distributiivsusomadust kasutades sulgude ette.
\left(x-5\right)\left(-x+1\right)\left(x+3\right)
Kirjutage ümber täielik teguriteks jaotatud avaldis.