Lahuta teguriteks
\left(f+8\right)^{2}
Arvuta
\left(f+8\right)^{2}
Jagama
Lõikelauale kopeeritud
a+b=16 ab=1\times 64=64
Jaotage avaldis rühmitamise abil teguriteks. Esmalt tuleb avaldis ümber kirjutada kui f^{2}+af+bf+64. a ja b otsimiseks häälestage süsteem lahendatud.
1,64 2,32 4,16 8,8
Kuna ab on positiivne, a ja b on sama märk. Kuna a+b on positiivne, a ja b on mõlemad positiivne. Loetlege kõik täisarvupaarid, mis annavad korrutiseks 64.
1+64=65 2+32=34 4+16=20 8+8=16
Arvutage iga paari summa.
a=8 b=8
Lahendus on paar, mis annab summa 16.
\left(f^{2}+8f\right)+\left(8f+64\right)
Kirjutagef^{2}+16f+64 ümber kujul \left(f^{2}+8f\right)+\left(8f+64\right).
f\left(f+8\right)+8\left(f+8\right)
Lahutage f esimesel ja 8 teise rühma.
\left(f+8\right)\left(f+8\right)
Tooge liige f+8 distributiivsusomadust kasutades sulgude ette.
\left(f+8\right)^{2}
Kirjutage ümber kaksliikme ruuduna.
factor(f^{2}+16f+64)
Sellel kolmliikmel on ruutkolmliikme kuju (võimalik, et korrutatud ühisteguriga). Ruutkolmliikmeid saab tegurdada pea- ja järelliikme ruutjuure leidmise kaudu.
\sqrt{64}=8
Leidke järelliikme 64 ruutjuur.
\left(f+8\right)^{2}
Ruutkolmliige on sellise kaksliikme ruut, mis on pealiikme ja järelliikme ruutjuurte summa või vahe ning mille märgi määrab ära ruutkolmliikme keskmise liikme märk.
f^{2}+16f+64=0
Ruutpolünoomi saab teguriteks lahutada teisendusega ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), kus x_{1} ja x_{2} on ruutvõrrandi ax^{2}+bx+c=0 lahendid.
f=\frac{-16±\sqrt{16^{2}-4\times 64}}{2}
Kõiki võrrandeid, mis on kujul ax^{2}+bx+c=0, saab lahendada ruutvõrrandi valemiga: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ruutvõrrandi valem annab kaks lahendit: ühe, kui ± on liitmine, ja teise, kui see on lahutamine.
f=\frac{-16±\sqrt{256-4\times 64}}{2}
Tõstke 16 ruutu.
f=\frac{-16±\sqrt{256-256}}{2}
Korrutage omavahel -4 ja 64.
f=\frac{-16±\sqrt{0}}{2}
Liitke 256 ja -256.
f=\frac{-16±0}{2}
Leidke 0 ruutjuur.
f^{2}+16f+64=\left(f-\left(-8\right)\right)\left(f-\left(-8\right)\right)
Lahutage algne avaldis teguriteks, kasutades valemit ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Asendage x_{1} väärtusega -8 ja x_{2} väärtusega -8.
f^{2}+16f+64=\left(f+8\right)\left(f+8\right)
Lihtsustage kõik valemid, mis on kujul p-\left(-q\right) kujule p+q.
Näited
Ruutvõrrand
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonomeetria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaarne võrrand
y = 3x + 4
Aritmeetika
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samaaegne võrrand
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentseerimine
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integratsioon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Piirid
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}