Lahuta teguriteks
a\left(x-2\right)\left(x+6\right)
Arvuta
a\left(x-2\right)\left(x+6\right)
Graafik
Viktoriin
Algebra
a x ^ { 2 } + 4 a x - 12 a
Jagama
Lõikelauale kopeeritud
a\left(x^{2}+4x-12\right)
Tooge a sulgude ette.
p+q=4 pq=1\left(-12\right)=-12
Mõelge valemile x^{2}+4x-12. Jaotage avaldis rühmitamise abil teguriteks. Esmalt tuleb avaldis ümber kirjutada kui x^{2}+px+qx-12. p ja q otsimiseks häälestage süsteem lahendatud.
-1,12 -2,6 -3,4
Kuna pq on negatiivne, p ja q on vastand märki. Kuna p+q on positiivne, on positiivne arv suurem kui negatiivne väärtus. Loetlege kõik täisarvupaarid, mis annavad korrutiseks -12.
-1+12=11 -2+6=4 -3+4=1
Arvutage iga paari summa.
p=-2 q=6
Lahendus on paar, mis annab summa 4.
\left(x^{2}-2x\right)+\left(6x-12\right)
Kirjutagex^{2}+4x-12 ümber kujul \left(x^{2}-2x\right)+\left(6x-12\right).
x\left(x-2\right)+6\left(x-2\right)
Lahutage x esimesel ja 6 teise rühma.
\left(x-2\right)\left(x+6\right)
Tooge liige x-2 distributiivsusomadust kasutades sulgude ette.
a\left(x-2\right)\left(x+6\right)
Kirjutage ümber täielik teguriteks jaotatud avaldis.
Näited
Ruutvõrrand
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonomeetria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaarne võrrand
y = 3x + 4
Aritmeetika
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samaaegne võrrand
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentseerimine
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integratsioon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Piirid
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}