Lahendage ja leidke a_1 (complex solution)
\left\{\begin{matrix}a_{1}=a_{n}q^{1-n}\text{, }&n=1\text{ or }q\neq 0\\a_{1}\in \mathrm{C}\text{, }&a_{n}=0\text{ and }q=0\text{ and }n\neq 1\end{matrix}\right,
Lahendage ja leidke a_1
\left\{\begin{matrix}a_{1}=a_{n}q^{1-n}\text{, }&\left(q<0\text{ and }Denominator(n)\text{bmod}2=1\right)\text{ or }q>0\\a_{1}\in \mathrm{R}\text{, }&a_{n}=0\text{ and }q=0\text{ and }n>1\end{matrix}\right,
Lahendage ja leidke a_n
a_{n}=a_{1}q^{n-1}
q>0\text{ or }\left(q=0\text{ and }n>1\right)\text{ or }\left(q<0\text{ and }Denominator(n)\text{bmod}2=1\right)
Jagama
Lõikelauale kopeeritud
a_{1}q^{n-1}=a_{n}
Vahetage pooled nii, et kõik muutuvad liikmed asuksid vasakul.
q^{n-1}a_{1}=a_{n}
Võrrand on standardkujul.
\frac{q^{n-1}a_{1}}{q^{n-1}}=\frac{a_{n}}{q^{n-1}}
Jagage mõlemad pooled q^{n-1}-ga.
a_{1}=\frac{a_{n}}{q^{n-1}}
q^{n-1}-ga jagamine võtab q^{n-1}-ga korrutamise tagasi.
a_{1}=a_{n}q^{1-n}
Jagage a_{n} väärtusega q^{n-1}.
a_{1}q^{n-1}=a_{n}
Vahetage pooled nii, et kõik muutuvad liikmed asuksid vasakul.
q^{n-1}a_{1}=a_{n}
Võrrand on standardkujul.
\frac{q^{n-1}a_{1}}{q^{n-1}}=\frac{a_{n}}{q^{n-1}}
Jagage mõlemad pooled q^{n-1}-ga.
a_{1}=\frac{a_{n}}{q^{n-1}}
q^{n-1}-ga jagamine võtab q^{n-1}-ga korrutamise tagasi.
a_{1}=a_{n}q^{1-n}
Jagage a_{n} väärtusega q^{n-1}.
Näited
Ruutvõrrand
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonomeetria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaarne võrrand
y = 3x + 4
Aritmeetika
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samaaegne võrrand
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentseerimine
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integratsioon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Piirid
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}