P ( n . 3 ) = 60
Lahendage ja leidke P
P=\frac{200}{n}
n\neq 0
Lahendage ja leidke n
n=\frac{200}{P}
P\neq 0
Viktoriin
Linear Equation
P ( n . 3 ) = 60
Jagama
Lõikelauale kopeeritud
\frac{3n}{10}P=60
Võrrand on standardkujul.
\frac{10\times \frac{3n}{10}P}{3n}=\frac{10\times 60}{3n}
Jagage mõlemad pooled 0,3n-ga.
P=\frac{10\times 60}{3n}
0,3n-ga jagamine võtab 0,3n-ga korrutamise tagasi.
P=\frac{200}{n}
Jagage 60 väärtusega 0,3n.
\frac{3P}{10}n=60
Võrrand on standardkujul.
\frac{10\times \frac{3P}{10}n}{3P}=\frac{10\times 60}{3P}
Jagage mõlemad pooled 0,3P-ga.
n=\frac{10\times 60}{3P}
0,3P-ga jagamine võtab 0,3P-ga korrutamise tagasi.
n=\frac{200}{P}
Jagage 60 väärtusega 0,3P.
Näited
Ruutvõrrand
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonomeetria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaarne võrrand
y = 3x + 4
Aritmeetika
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samaaegne võrrand
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentseerimine
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integratsioon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Piirid
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}