Lahendage ja leidke n (complex solution)
\left\{\begin{matrix}n=\log_{x}\left(y\left(\left(x+1\right)\left(x+2\right)\right)^{2}\right)+\frac{2\pi n_{1}i}{\ln(x)}\text{, }n_{1}\in \mathrm{Z}\text{, }&x\neq -2\text{ and }x\neq -1\text{ and }y\neq 0\text{ and }x\neq 1\text{ and }x\neq 0\\n\in \mathrm{C}\text{, }&\left(x=0\text{ and }y=0\right)\text{ or }\left(x=1\text{ and }y=\frac{1}{36}\right)\end{matrix}\right,
Lahendage ja leidke n
\left\{\begin{matrix}n=\log_{x}\left(y\left(\left(x+1\right)\left(x+2\right)\right)^{2}\right)\text{, }&y>0\text{ and }x\neq 1\text{ and }x>0\\n\in \mathrm{R}\text{, }&x=1\text{ and }y=\frac{1}{36}\\n>0\text{, }&x=0\text{ and }y=0\end{matrix}\right,
Graafik
Viktoriin
Algebra
y = \frac{ { x }^{ n } }{ { \left(x+1 \right) }^{ 2 } { \left(x+2 \right) }^{ 2 } }
Jagama
Lõikelauale kopeeritud
Näited
Ruutvõrrand
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonomeetria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaarne võrrand
y = 3x + 4
Aritmeetika
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samaaegne võrrand
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentseerimine
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integratsioon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Piirid
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}