Liigu edasi põhisisu juurde
Lahendage ja leidke x (complex solution)
Tick mark Image
Lahendage ja leidke x
Tick mark Image
Graafik

Sarnased probleemid veebiotsingust

Jagama

±\frac{729}{64},±\frac{729}{32},±\frac{729}{16},±\frac{729}{8},±\frac{729}{4},±\frac{729}{2},±729,±\frac{243}{64},±\frac{243}{32},±\frac{243}{16},±\frac{243}{8},±\frac{243}{4},±\frac{243}{2},±243,±\frac{81}{64},±\frac{81}{32},±\frac{81}{16},±\frac{81}{8},±\frac{81}{4},±\frac{81}{2},±81,±\frac{27}{64},±\frac{27}{32},±\frac{27}{16},±\frac{27}{8},±\frac{27}{4},±\frac{27}{2},±27,±\frac{9}{64},±\frac{9}{32},±\frac{9}{16},±\frac{9}{8},±\frac{9}{4},±\frac{9}{2},±9,±\frac{3}{64},±\frac{3}{32},±\frac{3}{16},±\frac{3}{8},±\frac{3}{4},±\frac{3}{2},±3,±\frac{1}{64},±\frac{1}{32},±\frac{1}{16},±\frac{1}{8},±\frac{1}{4},±\frac{1}{2},±1
Ratsionaalarvuliste nullkohtade teoreemi järgi on kõik polünoomi ratsionaalarvulised nullkohad kujul \frac{p}{q}, kus p jagab konstantliikme 729 ja q jagab pealiikme kordaja 64. Loetlege kõik kandidaadid \frac{p}{q}.
x=-\frac{9}{4}
Ühe sellise juure leidmiseks proovige kõiki täisarvulisi väärtusi alates väikseimast (absoluutväärtuse alusel). Kui täisarvulisi juuri ei leita, proovige murdarve.
16x^{2}-36x+81=0
Teoreem korral x-k on polünoomi liikmete iga juure k. Jagage 64x^{3}+729 väärtusega 4\left(x+\frac{9}{4}\right)=4x+9, et leida 16x^{2}-36x+81. Lahendage võrrand, mille tulemus võrdub 0.
x=\frac{-\left(-36\right)±\sqrt{\left(-36\right)^{2}-4\times 16\times 81}}{2\times 16}
Kõik võrrandid, mis on kujul ax^{2}+bx+c=0, saab lahendada ruutvõrrandi valemiga: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Asendage a ruutvõrrandis väärtusega 16, b väärtusega -36 ja c väärtusega 81.
x=\frac{36±\sqrt{-3888}}{32}
Tehke arvutustehted.
x=\frac{-9i\sqrt{3}+9}{8} x=\frac{9+9i\sqrt{3}}{8}
Lahendage võrrand 16x^{2}-36x+81=0, kui ± on pluss ja kui ± on miinus.
x=-\frac{9}{4} x=\frac{-9i\sqrt{3}+9}{8} x=\frac{9+9i\sqrt{3}}{8}
Loetlege kõik leitud lahendused.
±\frac{729}{64},±\frac{729}{32},±\frac{729}{16},±\frac{729}{8},±\frac{729}{4},±\frac{729}{2},±729,±\frac{243}{64},±\frac{243}{32},±\frac{243}{16},±\frac{243}{8},±\frac{243}{4},±\frac{243}{2},±243,±\frac{81}{64},±\frac{81}{32},±\frac{81}{16},±\frac{81}{8},±\frac{81}{4},±\frac{81}{2},±81,±\frac{27}{64},±\frac{27}{32},±\frac{27}{16},±\frac{27}{8},±\frac{27}{4},±\frac{27}{2},±27,±\frac{9}{64},±\frac{9}{32},±\frac{9}{16},±\frac{9}{8},±\frac{9}{4},±\frac{9}{2},±9,±\frac{3}{64},±\frac{3}{32},±\frac{3}{16},±\frac{3}{8},±\frac{3}{4},±\frac{3}{2},±3,±\frac{1}{64},±\frac{1}{32},±\frac{1}{16},±\frac{1}{8},±\frac{1}{4},±\frac{1}{2},±1
Ratsionaalarvuliste nullkohtade teoreemi järgi on kõik polünoomi ratsionaalarvulised nullkohad kujul \frac{p}{q}, kus p jagab konstantliikme 729 ja q jagab pealiikme kordaja 64. Loetlege kõik kandidaadid \frac{p}{q}.
x=-\frac{9}{4}
Ühe sellise juure leidmiseks proovige kõiki täisarvulisi väärtusi alates väikseimast (absoluutväärtuse alusel). Kui täisarvulisi juuri ei leita, proovige murdarve.
16x^{2}-36x+81=0
Teoreem korral x-k on polünoomi liikmete iga juure k. Jagage 64x^{3}+729 väärtusega 4\left(x+\frac{9}{4}\right)=4x+9, et leida 16x^{2}-36x+81. Lahendage võrrand, mille tulemus võrdub 0.
x=\frac{-\left(-36\right)±\sqrt{\left(-36\right)^{2}-4\times 16\times 81}}{2\times 16}
Kõik võrrandid, mis on kujul ax^{2}+bx+c=0, saab lahendada ruutvõrrandi valemiga: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Asendage a ruutvõrrandis väärtusega 16, b väärtusega -36 ja c väärtusega 81.
x=\frac{36±\sqrt{-3888}}{32}
Tehke arvutustehted.
x\in \emptyset
Kuna negatiivse arvu ruutjuurt pole reaalväljal määratletud, siis lahendeid pole.
x=-\frac{9}{4}
Loetlege kõik leitud lahendused.