Lahuta teguriteks
\left(2x-3\right)\left(3x+5\right)
Arvuta
6x^{2}+x-15
Graafik
Jagama
Lõikelauale kopeeritud
6x^{2}+x-15
Korrutage ja kombineerige sarnased liikmed.
a+b=1 ab=6\left(-15\right)=-90
Jaotage avaldis rühmitamise abil teguriteks. Esmalt tuleb avaldis ümber kirjutada kui 6x^{2}+ax+bx-15. a ja b otsimiseks häälestage süsteem lahendatud.
-1,90 -2,45 -3,30 -5,18 -6,15 -9,10
Kuna ab on negatiivne, a ja b on vastand märki. Kuna a+b on positiivne, on positiivne arv suurem kui negatiivne väärtus. Loetlege kõik täisarvupaarid, mis annavad korrutiseks -90.
-1+90=89 -2+45=43 -3+30=27 -5+18=13 -6+15=9 -9+10=1
Arvutage iga paari summa.
a=-9 b=10
Lahendus on paar, mis annab summa 1.
\left(6x^{2}-9x\right)+\left(10x-15\right)
Kirjutage6x^{2}+x-15 ümber kujul \left(6x^{2}-9x\right)+\left(10x-15\right).
3x\left(2x-3\right)+5\left(2x-3\right)
Lahutage 3x esimesel ja 5 teise rühma.
\left(2x-3\right)\left(3x+5\right)
Tooge liige 2x-3 distributiivsusomadust kasutades sulgude ette.
6x^{2}+x-15
Kombineerige -9x ja 10x, et leida x.
Näited
Ruutvõrrand
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonomeetria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaarne võrrand
y = 3x + 4
Aritmeetika
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samaaegne võrrand
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentseerimine
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integratsioon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Piirid
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}