Liigu edasi põhisisu juurde
Lahendage ja leidke x
Tick mark Image
Graafik

Sarnased probleemid veebiotsingust

Jagama

x^{2}-25=0
Jagage mõlemad pooled 5-ga.
\left(x-5\right)\left(x+5\right)=0
Mõelge valemile x^{2}-25. Kirjutagex^{2}-25 ümber kujul x^{2}-5^{2}. Ruutude vahe saab tegurdada reegli abil: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
x=5 x=-5
Võrrandi lahenduste leidmiseks Lahendage x-5=0 ja x+5=0.
5x^{2}=125
Liitke 125 mõlemale poolele. Nulli liitmisel mis tahes väärtusele on tulemuseks sama väärtus.
x^{2}=\frac{125}{5}
Jagage mõlemad pooled 5-ga.
x^{2}=25
Jagage 125 väärtusega 5, et leida 25.
x=5 x=-5
Leidke võrrandi mõlema poole ruutjuur.
5x^{2}-125=0
Sellised ruutvõrrandid nagu see siin, kus on liige x^{2}, kuid puudub liige x, saab lahendada ruutvõrrandi valemiga \frac{-b±\sqrt{b^{2}-4ac}}{2a}, kui ruutvõrrand on viidud standardkujule: ax^{2}+bx+c=0.
x=\frac{0±\sqrt{0^{2}-4\times 5\left(-125\right)}}{2\times 5}
See võrrand on standardkujul: ax^{2}+bx+c=0. Asendage ruutvõrrandis \frac{-b±\sqrt{b^{2}-4ac}}{2a} väärtus a väärtusega 5, b väärtusega 0 ja c väärtusega -125.
x=\frac{0±\sqrt{-4\times 5\left(-125\right)}}{2\times 5}
Tõstke 0 ruutu.
x=\frac{0±\sqrt{-20\left(-125\right)}}{2\times 5}
Korrutage omavahel -4 ja 5.
x=\frac{0±\sqrt{2500}}{2\times 5}
Korrutage omavahel -20 ja -125.
x=\frac{0±50}{2\times 5}
Leidke 2500 ruutjuur.
x=\frac{0±50}{10}
Korrutage omavahel 2 ja 5.
x=5
Nüüd lahendage võrrand x=\frac{0±50}{10}, kui ± on pluss. Jagage 50 väärtusega 10.
x=-5
Nüüd lahendage võrrand x=\frac{0±50}{10}, kui ± on miinus. Jagage -50 väärtusega 10.
x=5 x=-5
Võrrand on nüüd lahendatud.