Lahendage ja leidke x
x=-1
x=3
Graafik
Viktoriin
Polynomial
5 { x }^{ 2 } -10x-15=0
Jagama
Lõikelauale kopeeritud
x^{2}-2x-3=0
Jagage mõlemad pooled 5-ga.
a+b=-2 ab=1\left(-3\right)=-3
Võrrandi lahendamiseks jaotage võrrandi vasak pool rühmitamise abil teguriteks. Esmalt tuleb vasak pool ümber kirjutada kujul x^{2}+ax+bx-3. a ja b otsimiseks häälestage süsteem lahendatud.
a=-3 b=1
Kuna ab on negatiivne, a ja b on vastand märki. Kuna a+b on negatiivne, on negatiivne arv suurem kui positiivne väärtus. Ainult siis, kui paar on süsteemi lahendus.
\left(x^{2}-3x\right)+\left(x-3\right)
Kirjutagex^{2}-2x-3 ümber kujul \left(x^{2}-3x\right)+\left(x-3\right).
x\left(x-3\right)+x-3
Tooge x võrrandis x^{2}-3x sulgude ette.
\left(x-3\right)\left(x+1\right)
Tooge liige x-3 distributiivsusomadust kasutades sulgude ette.
x=3 x=-1
Võrrandi lahenduste leidmiseks Lahendage x-3=0 ja x+1=0.
5x^{2}-10x-15=0
Kõiki võrrandeid, mis on kujul ax^{2}+bx+c=0, saab lahendada ruutvõrrandi valemiga: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ruutvõrrandi valem annab kaks lahendit: ühe, kui ± on liitmine, ja teise, kui see on lahutamine.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 5\left(-15\right)}}{2\times 5}
See võrrand on standardkujul: ax^{2}+bx+c=0. Asendage ruutvõrrandis \frac{-b±\sqrt{b^{2}-4ac}}{2a} väärtus a väärtusega 5, b väärtusega -10 ja c väärtusega -15.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 5\left(-15\right)}}{2\times 5}
Tõstke -10 ruutu.
x=\frac{-\left(-10\right)±\sqrt{100-20\left(-15\right)}}{2\times 5}
Korrutage omavahel -4 ja 5.
x=\frac{-\left(-10\right)±\sqrt{100+300}}{2\times 5}
Korrutage omavahel -20 ja -15.
x=\frac{-\left(-10\right)±\sqrt{400}}{2\times 5}
Liitke 100 ja 300.
x=\frac{-\left(-10\right)±20}{2\times 5}
Leidke 400 ruutjuur.
x=\frac{10±20}{2\times 5}
Arvu -10 vastand on 10.
x=\frac{10±20}{10}
Korrutage omavahel 2 ja 5.
x=\frac{30}{10}
Nüüd lahendage võrrand x=\frac{10±20}{10}, kui ± on pluss. Liitke 10 ja 20.
x=3
Jagage 30 väärtusega 10.
x=-\frac{10}{10}
Nüüd lahendage võrrand x=\frac{10±20}{10}, kui ± on miinus. Lahutage 20 väärtusest 10.
x=-1
Jagage -10 väärtusega 10.
x=3 x=-1
Võrrand on nüüd lahendatud.
5x^{2}-10x-15=0
Ruutvõrrandite (nagu see siin) lahendamiseks tuleb mõlemad pooled ruutu tõsta. Ruutu tõstmiseks peab võrrand olema esmalt kujul x^{2}+bx=c.
5x^{2}-10x-15-\left(-15\right)=-\left(-15\right)
Liitke võrrandi mõlema poolega 15.
5x^{2}-10x=-\left(-15\right)
-15 lahutamine iseendast annab tulemuseks 0.
5x^{2}-10x=15
Lahutage -15 väärtusest 0.
\frac{5x^{2}-10x}{5}=\frac{15}{5}
Jagage mõlemad pooled 5-ga.
x^{2}+\left(-\frac{10}{5}\right)x=\frac{15}{5}
5-ga jagamine võtab 5-ga korrutamise tagasi.
x^{2}-2x=\frac{15}{5}
Jagage -10 väärtusega 5.
x^{2}-2x=3
Jagage 15 väärtusega 5.
x^{2}-2x+1=3+1
Jagage liikme x kordaja -2 2-ga, et leida -1. Seejärel liitke -1 ruut võrrandi mõlemale poolele. Selle tehtega saab võrrandi vasakust poolest täisruut.
x^{2}-2x+1=4
Liitke 3 ja 1.
\left(x-1\right)^{2}=4
Lahutage x^{2}-2x+1. Kui x^{2}+bx+c on üldiselt täiuslik ruut, saab selle alati teguriteks lahutada kui \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{4}
Leidke võrrandi mõlema poole ruutjuur.
x-1=2 x-1=-2
Lihtsustage.
x=3 x=-1
Liitke võrrandi mõlema poolega 1.
Näited
Ruutvõrrand
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonomeetria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaarne võrrand
y = 3x + 4
Aritmeetika
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samaaegne võrrand
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentseerimine
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integratsioon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Piirid
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}