Liigu edasi põhisisu juurde
Lahendage ja leidke z
Tick mark Image

Sarnased probleemid veebiotsingust

Jagama

4z^{2}+60z=800
Kõiki võrrandeid, mis on kujul ax^{2}+bx+c=0, saab lahendada ruutvõrrandi valemiga: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ruutvõrrandi valem annab kaks lahendit: ühe, kui ± on liitmine, ja teise, kui see on lahutamine.
4z^{2}+60z-800=800-800
Lahutage võrrandi mõlemast poolest 800.
4z^{2}+60z-800=0
800 lahutamine iseendast annab tulemuseks 0.
z=\frac{-60±\sqrt{60^{2}-4\times 4\left(-800\right)}}{2\times 4}
See võrrand on standardkujul: ax^{2}+bx+c=0. Asendage ruutvõrrandis \frac{-b±\sqrt{b^{2}-4ac}}{2a} väärtus a väärtusega 4, b väärtusega 60 ja c väärtusega -800.
z=\frac{-60±\sqrt{3600-4\times 4\left(-800\right)}}{2\times 4}
Tõstke 60 ruutu.
z=\frac{-60±\sqrt{3600-16\left(-800\right)}}{2\times 4}
Korrutage omavahel -4 ja 4.
z=\frac{-60±\sqrt{3600+12800}}{2\times 4}
Korrutage omavahel -16 ja -800.
z=\frac{-60±\sqrt{16400}}{2\times 4}
Liitke 3600 ja 12800.
z=\frac{-60±20\sqrt{41}}{2\times 4}
Leidke 16400 ruutjuur.
z=\frac{-60±20\sqrt{41}}{8}
Korrutage omavahel 2 ja 4.
z=\frac{20\sqrt{41}-60}{8}
Nüüd lahendage võrrand z=\frac{-60±20\sqrt{41}}{8}, kui ± on pluss. Liitke -60 ja 20\sqrt{41}.
z=\frac{5\sqrt{41}-15}{2}
Jagage -60+20\sqrt{41} väärtusega 8.
z=\frac{-20\sqrt{41}-60}{8}
Nüüd lahendage võrrand z=\frac{-60±20\sqrt{41}}{8}, kui ± on miinus. Lahutage 20\sqrt{41} väärtusest -60.
z=\frac{-5\sqrt{41}-15}{2}
Jagage -60-20\sqrt{41} väärtusega 8.
z=\frac{5\sqrt{41}-15}{2} z=\frac{-5\sqrt{41}-15}{2}
Võrrand on nüüd lahendatud.
4z^{2}+60z=800
Ruutvõrrandite (nagu see siin) lahendamiseks tuleb mõlemad pooled ruutu tõsta. Ruutu tõstmiseks peab võrrand olema esmalt kujul x^{2}+bx=c.
\frac{4z^{2}+60z}{4}=\frac{800}{4}
Jagage mõlemad pooled 4-ga.
z^{2}+\frac{60}{4}z=\frac{800}{4}
4-ga jagamine võtab 4-ga korrutamise tagasi.
z^{2}+15z=\frac{800}{4}
Jagage 60 väärtusega 4.
z^{2}+15z=200
Jagage 800 väärtusega 4.
z^{2}+15z+\left(\frac{15}{2}\right)^{2}=200+\left(\frac{15}{2}\right)^{2}
Jagage liikme x kordaja 15 2-ga, et leida \frac{15}{2}. Seejärel liitke \frac{15}{2} ruut võrrandi mõlemale poolele. Selle tehtega saab võrrandi vasakust poolest täisruut.
z^{2}+15z+\frac{225}{4}=200+\frac{225}{4}
Tõstke \frac{15}{2} ruutu, tõstes ruutu nii murru lugeja kui ka nimetaja.
z^{2}+15z+\frac{225}{4}=\frac{1025}{4}
Liitke 200 ja \frac{225}{4}.
\left(z+\frac{15}{2}\right)^{2}=\frac{1025}{4}
Lahutage z^{2}+15z+\frac{225}{4}. Kui x^{2}+bx+c on üldiselt täiuslik ruut, saab selle alati teguriteks lahutada kui \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(z+\frac{15}{2}\right)^{2}}=\sqrt{\frac{1025}{4}}
Leidke võrrandi mõlema poole ruutjuur.
z+\frac{15}{2}=\frac{5\sqrt{41}}{2} z+\frac{15}{2}=-\frac{5\sqrt{41}}{2}
Lihtsustage.
z=\frac{5\sqrt{41}-15}{2} z=\frac{-5\sqrt{41}-15}{2}
Lahutage võrrandi mõlemast poolest \frac{15}{2}.