Lahuta teguriteks
4\left(a-\frac{19-\sqrt{89}}{8}\right)\left(a-\frac{\sqrt{89}+19}{8}\right)
Arvuta
4a^{2}-19a+17
Jagama
Lõikelauale kopeeritud
4a^{2}-19a+17=0
Ruutpolünoomi saab teguriteks lahutada teisendusega ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), kus x_{1} ja x_{2} on ruutvõrrandi ax^{2}+bx+c=0 lahendid.
a=\frac{-\left(-19\right)±\sqrt{\left(-19\right)^{2}-4\times 4\times 17}}{2\times 4}
Kõiki võrrandeid, mis on kujul ax^{2}+bx+c=0, saab lahendada ruutvõrrandi valemiga: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ruutvõrrandi valem annab kaks lahendit: ühe, kui ± on liitmine, ja teise, kui see on lahutamine.
a=\frac{-\left(-19\right)±\sqrt{361-4\times 4\times 17}}{2\times 4}
Tõstke -19 ruutu.
a=\frac{-\left(-19\right)±\sqrt{361-16\times 17}}{2\times 4}
Korrutage omavahel -4 ja 4.
a=\frac{-\left(-19\right)±\sqrt{361-272}}{2\times 4}
Korrutage omavahel -16 ja 17.
a=\frac{-\left(-19\right)±\sqrt{89}}{2\times 4}
Liitke 361 ja -272.
a=\frac{19±\sqrt{89}}{2\times 4}
Arvu -19 vastand on 19.
a=\frac{19±\sqrt{89}}{8}
Korrutage omavahel 2 ja 4.
a=\frac{\sqrt{89}+19}{8}
Nüüd lahendage võrrand a=\frac{19±\sqrt{89}}{8}, kui ± on pluss. Liitke 19 ja \sqrt{89}.
a=\frac{19-\sqrt{89}}{8}
Nüüd lahendage võrrand a=\frac{19±\sqrt{89}}{8}, kui ± on miinus. Lahutage \sqrt{89} väärtusest 19.
4a^{2}-19a+17=4\left(a-\frac{\sqrt{89}+19}{8}\right)\left(a-\frac{19-\sqrt{89}}{8}\right)
Lahutage algne avaldis teguriteks, kasutades valemit ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Asendage x_{1} väärtusega \frac{19+\sqrt{89}}{8} ja x_{2} väärtusega \frac{19-\sqrt{89}}{8}.
Näited
Ruutvõrrand
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonomeetria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaarne võrrand
y = 3x + 4
Aritmeetika
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samaaegne võrrand
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentseerimine
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integratsioon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Piirid
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}