Liigu edasi põhisisu juurde
Lahuta teguriteks
Tick mark Image
Arvuta
Tick mark Image
Graafik

Sarnased probleemid veebiotsingust

Jagama

-x^{2}+7x+30
Paigutage polünoomi liikmed standardkujule viimiseks ümber. Järjestage liikmed suurimast väikseimani.
a+b=7 ab=-30=-30
Jaotage avaldis rühmitamise abil teguriteks. Esmalt tuleb avaldis ümber kirjutada kui -x^{2}+ax+bx+30. a ja b otsimiseks häälestage süsteem lahendatud.
-1,30 -2,15 -3,10 -5,6
Kuna ab on negatiivne, a ja b on vastand märki. Kuna a+b on positiivne, on positiivne arv suurem kui negatiivne väärtus. Loetlege kõik täisarvupaarid, mis annavad korrutiseks -30.
-1+30=29 -2+15=13 -3+10=7 -5+6=1
Arvutage iga paari summa.
a=10 b=-3
Lahendus on paar, mis annab summa 7.
\left(-x^{2}+10x\right)+\left(-3x+30\right)
Kirjutage-x^{2}+7x+30 ümber kujul \left(-x^{2}+10x\right)+\left(-3x+30\right).
-x\left(x-10\right)-3\left(x-10\right)
Lahutage -x esimesel ja -3 teise rühma.
\left(x-10\right)\left(-x-3\right)
Tooge liige x-10 distributiivsusomadust kasutades sulgude ette.
-x^{2}+7x+30=0
Ruutpolünoomi saab teguriteks lahutada teisendusega ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), kus x_{1} ja x_{2} on ruutvõrrandi ax^{2}+bx+c=0 lahendid.
x=\frac{-7±\sqrt{7^{2}-4\left(-1\right)\times 30}}{2\left(-1\right)}
Kõiki võrrandeid, mis on kujul ax^{2}+bx+c=0, saab lahendada ruutvõrrandi valemiga: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ruutvõrrandi valem annab kaks lahendit: ühe, kui ± on liitmine, ja teise, kui see on lahutamine.
x=\frac{-7±\sqrt{49-4\left(-1\right)\times 30}}{2\left(-1\right)}
Tõstke 7 ruutu.
x=\frac{-7±\sqrt{49+4\times 30}}{2\left(-1\right)}
Korrutage omavahel -4 ja -1.
x=\frac{-7±\sqrt{49+120}}{2\left(-1\right)}
Korrutage omavahel 4 ja 30.
x=\frac{-7±\sqrt{169}}{2\left(-1\right)}
Liitke 49 ja 120.
x=\frac{-7±13}{2\left(-1\right)}
Leidke 169 ruutjuur.
x=\frac{-7±13}{-2}
Korrutage omavahel 2 ja -1.
x=\frac{6}{-2}
Nüüd lahendage võrrand x=\frac{-7±13}{-2}, kui ± on pluss. Liitke -7 ja 13.
x=-3
Jagage 6 väärtusega -2.
x=-\frac{20}{-2}
Nüüd lahendage võrrand x=\frac{-7±13}{-2}, kui ± on miinus. Lahutage 13 väärtusest -7.
x=10
Jagage -20 väärtusega -2.
-x^{2}+7x+30=-\left(x-\left(-3\right)\right)\left(x-10\right)
Lahutage algne avaldis teguriteks, kasutades valemit ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Asendage x_{1} väärtusega -3 ja x_{2} väärtusega 10.
-x^{2}+7x+30=-\left(x+3\right)\left(x-10\right)
Lihtsustage kõik valemid, mis on kujul p-\left(-q\right) kujule p+q.