Liigu edasi põhisisu juurde
Lahuta teguriteks
Tick mark Image
Arvuta
Tick mark Image
Graafik

Sarnased probleemid veebiotsingust

Jagama

a+b=4 ab=3\times 1=3
Jaotage avaldis rühmitamise abil teguriteks. Esmalt tuleb avaldis ümber kirjutada kui 3x^{2}+ax+bx+1. a ja b otsimiseks häälestage süsteem lahendatud.
a=1 b=3
Kuna ab on positiivne, a ja b on sama märk. Kuna a+b on positiivne, a ja b on mõlemad positiivne. Ainult siis, kui paar on süsteemi lahendus.
\left(3x^{2}+x\right)+\left(3x+1\right)
Kirjutage3x^{2}+4x+1 ümber kujul \left(3x^{2}+x\right)+\left(3x+1\right).
x\left(3x+1\right)+3x+1
Tooge x võrrandis 3x^{2}+x sulgude ette.
\left(3x+1\right)\left(x+1\right)
Tooge liige 3x+1 distributiivsusomadust kasutades sulgude ette.
3x^{2}+4x+1=0
Ruutpolünoomi saab teguriteks lahutada teisendusega ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), kus x_{1} ja x_{2} on ruutvõrrandi ax^{2}+bx+c=0 lahendid.
x=\frac{-4±\sqrt{4^{2}-4\times 3}}{2\times 3}
Kõiki võrrandeid, mis on kujul ax^{2}+bx+c=0, saab lahendada ruutvõrrandi valemiga: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ruutvõrrandi valem annab kaks lahendit: ühe, kui ± on liitmine, ja teise, kui see on lahutamine.
x=\frac{-4±\sqrt{16-4\times 3}}{2\times 3}
Tõstke 4 ruutu.
x=\frac{-4±\sqrt{16-12}}{2\times 3}
Korrutage omavahel -4 ja 3.
x=\frac{-4±\sqrt{4}}{2\times 3}
Liitke 16 ja -12.
x=\frac{-4±2}{2\times 3}
Leidke 4 ruutjuur.
x=\frac{-4±2}{6}
Korrutage omavahel 2 ja 3.
x=-\frac{2}{6}
Nüüd lahendage võrrand x=\frac{-4±2}{6}, kui ± on pluss. Liitke -4 ja 2.
x=-\frac{1}{3}
Taandage murd \frac{-2}{6} vähimale ühiskordsele, eraldades ja taandades arvu 2.
x=-\frac{6}{6}
Nüüd lahendage võrrand x=\frac{-4±2}{6}, kui ± on miinus. Lahutage 2 väärtusest -4.
x=-1
Jagage -6 väärtusega 6.
3x^{2}+4x+1=3\left(x-\left(-\frac{1}{3}\right)\right)\left(x-\left(-1\right)\right)
Lahutage algne avaldis teguriteks, kasutades valemit ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right). Asendage x_{1} väärtusega -\frac{1}{3} ja x_{2} väärtusega -1.
3x^{2}+4x+1=3\left(x+\frac{1}{3}\right)\left(x+1\right)
Lihtsustage kõik valemid, mis on kujul p-\left(-q\right) kujule p+q.
3x^{2}+4x+1=3\times \frac{3x+1}{3}\left(x+1\right)
Liitke \frac{1}{3} ja x, leides ühise nimetaja ning liites lugejad. Seejärel taandage murd võimaluse korral vähimale ühiskordsele.
3x^{2}+4x+1=\left(3x+1\right)\left(x+1\right)
Taandage suurim ühistegur 3 hulkades 3 ja 3.