Lahendage ja leidke x
x=\frac{1}{2}=0,5
x=4
Graafik
Viktoriin
Polynomial
2 x ^ { 2 } - 9 x + 4 = 0
Jagama
Lõikelauale kopeeritud
a+b=-9 ab=2\times 4=8
Võrrandi lahendamiseks jaotage võrrandi vasak pool rühmitamise abil teguriteks. Esmalt tuleb vasak pool ümber kirjutada kujul 2x^{2}+ax+bx+4. a ja b otsimiseks häälestage süsteem lahendatud.
-1,-8 -2,-4
Kuna ab on positiivne, a ja b on sama märk. Kuna a+b on negatiivne, a ja b on mõlemad negatiivsed. Loetlege kõik täisarvupaarid, mis annavad korrutiseks 8.
-1-8=-9 -2-4=-6
Arvutage iga paari summa.
a=-8 b=-1
Lahendus on paar, mis annab summa -9.
\left(2x^{2}-8x\right)+\left(-x+4\right)
Kirjutage2x^{2}-9x+4 ümber kujul \left(2x^{2}-8x\right)+\left(-x+4\right).
2x\left(x-4\right)-\left(x-4\right)
Lahutage 2x esimesel ja -1 teise rühma.
\left(x-4\right)\left(2x-1\right)
Tooge liige x-4 distributiivsusomadust kasutades sulgude ette.
x=4 x=\frac{1}{2}
Võrrandi lahenduste leidmiseks Lahendage x-4=0 ja 2x-1=0.
2x^{2}-9x+4=0
Kõiki võrrandeid, mis on kujul ax^{2}+bx+c=0, saab lahendada ruutvõrrandi valemiga: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ruutvõrrandi valem annab kaks lahendit: ühe, kui ± on liitmine, ja teise, kui see on lahutamine.
x=\frac{-\left(-9\right)±\sqrt{\left(-9\right)^{2}-4\times 2\times 4}}{2\times 2}
See võrrand on standardkujul: ax^{2}+bx+c=0. Asendage ruutvõrrandis \frac{-b±\sqrt{b^{2}-4ac}}{2a} väärtus a väärtusega 2, b väärtusega -9 ja c väärtusega 4.
x=\frac{-\left(-9\right)±\sqrt{81-4\times 2\times 4}}{2\times 2}
Tõstke -9 ruutu.
x=\frac{-\left(-9\right)±\sqrt{81-8\times 4}}{2\times 2}
Korrutage omavahel -4 ja 2.
x=\frac{-\left(-9\right)±\sqrt{81-32}}{2\times 2}
Korrutage omavahel -8 ja 4.
x=\frac{-\left(-9\right)±\sqrt{49}}{2\times 2}
Liitke 81 ja -32.
x=\frac{-\left(-9\right)±7}{2\times 2}
Leidke 49 ruutjuur.
x=\frac{9±7}{2\times 2}
Arvu -9 vastand on 9.
x=\frac{9±7}{4}
Korrutage omavahel 2 ja 2.
x=\frac{16}{4}
Nüüd lahendage võrrand x=\frac{9±7}{4}, kui ± on pluss. Liitke 9 ja 7.
x=4
Jagage 16 väärtusega 4.
x=\frac{2}{4}
Nüüd lahendage võrrand x=\frac{9±7}{4}, kui ± on miinus. Lahutage 7 väärtusest 9.
x=\frac{1}{2}
Taandage murd \frac{2}{4} vähimale ühiskordsele, eraldades ja taandades arvu 2.
x=4 x=\frac{1}{2}
Võrrand on nüüd lahendatud.
2x^{2}-9x+4=0
Ruutvõrrandite (nagu see siin) lahendamiseks tuleb mõlemad pooled ruutu tõsta. Ruutu tõstmiseks peab võrrand olema esmalt kujul x^{2}+bx=c.
2x^{2}-9x+4-4=-4
Lahutage võrrandi mõlemast poolest 4.
2x^{2}-9x=-4
4 lahutamine iseendast annab tulemuseks 0.
\frac{2x^{2}-9x}{2}=-\frac{4}{2}
Jagage mõlemad pooled 2-ga.
x^{2}-\frac{9}{2}x=-\frac{4}{2}
2-ga jagamine võtab 2-ga korrutamise tagasi.
x^{2}-\frac{9}{2}x=-2
Jagage -4 väärtusega 2.
x^{2}-\frac{9}{2}x+\left(-\frac{9}{4}\right)^{2}=-2+\left(-\frac{9}{4}\right)^{2}
Jagage liikme x kordaja -\frac{9}{2} 2-ga, et leida -\frac{9}{4}. Seejärel liitke -\frac{9}{4} ruut võrrandi mõlemale poolele. Selle tehtega saab võrrandi vasakust poolest täisruut.
x^{2}-\frac{9}{2}x+\frac{81}{16}=-2+\frac{81}{16}
Tõstke -\frac{9}{4} ruutu, tõstes ruutu nii murru lugeja kui ka nimetaja.
x^{2}-\frac{9}{2}x+\frac{81}{16}=\frac{49}{16}
Liitke -2 ja \frac{81}{16}.
\left(x-\frac{9}{4}\right)^{2}=\frac{49}{16}
Lahutage x^{2}-\frac{9}{2}x+\frac{81}{16}. Kui x^{2}+bx+c on üldiselt täiuslik ruut, saab selle alati teguriteks lahutada kui \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{9}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
Leidke võrrandi mõlema poole ruutjuur.
x-\frac{9}{4}=\frac{7}{4} x-\frac{9}{4}=-\frac{7}{4}
Lihtsustage.
x=4 x=\frac{1}{2}
Liitke võrrandi mõlema poolega \frac{9}{4}.
Näited
Ruutvõrrand
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonomeetria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaarne võrrand
y = 3x + 4
Aritmeetika
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samaaegne võrrand
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentseerimine
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integratsioon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Piirid
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}