Lahuta teguriteks
\frac{\left(3x-2\right)\left(2x+3\right)}{3}
Arvuta
2x^{2}+\frac{5x}{3}-2
Graafik
Jagama
Lõikelauale kopeeritud
\frac{6x^{2}+5x-6}{3}
Tooge \frac{1}{3} sulgude ette.
a+b=5 ab=6\left(-6\right)=-36
Mõelge valemile 6x^{2}+5x-6. Jaotage avaldis rühmitamise abil teguriteks. Esmalt tuleb avaldis ümber kirjutada kui 6x^{2}+ax+bx-6. a ja b otsimiseks häälestage süsteem lahendatud.
-1,36 -2,18 -3,12 -4,9 -6,6
Kuna ab on negatiivne, a ja b on vastand märki. Kuna a+b on positiivne, on positiivne arv suurem kui negatiivne väärtus. Loetlege kõik täisarvupaarid, mis annavad korrutiseks -36.
-1+36=35 -2+18=16 -3+12=9 -4+9=5 -6+6=0
Arvutage iga paari summa.
a=-4 b=9
Lahendus on paar, mis annab summa 5.
\left(6x^{2}-4x\right)+\left(9x-6\right)
Kirjutage6x^{2}+5x-6 ümber kujul \left(6x^{2}-4x\right)+\left(9x-6\right).
2x\left(3x-2\right)+3\left(3x-2\right)
Lahutage 2x esimesel ja 3 teise rühma.
\left(3x-2\right)\left(2x+3\right)
Tooge liige 3x-2 distributiivsusomadust kasutades sulgude ette.
\frac{\left(3x-2\right)\left(2x+3\right)}{3}
Kirjutage ümber täielik teguriteks jaotatud avaldis.
Näited
Ruutvõrrand
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonomeetria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaarne võrrand
y = 3x + 4
Aritmeetika
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samaaegne võrrand
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentseerimine
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integratsioon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Piirid
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}