Lahendage ja leidke x
x=-1
Graafik
Jagama
Lõikelauale kopeeritud
x^{2}+2x+1=0
Jagage mõlemad pooled 2-ga.
a+b=2 ab=1\times 1=1
Võrrandi lahendamiseks jaotage võrrandi vasak pool rühmitamise abil teguriteks. Esmalt tuleb vasak pool ümber kirjutada kujul x^{2}+ax+bx+1. a ja b otsimiseks häälestage süsteem lahendatud.
a=1 b=1
Kuna ab on positiivne, a ja b on sama märk. Kuna a+b on positiivne, a ja b on mõlemad positiivne. Ainult siis, kui paar on süsteemi lahendus.
\left(x^{2}+x\right)+\left(x+1\right)
Kirjutagex^{2}+2x+1 ümber kujul \left(x^{2}+x\right)+\left(x+1\right).
x\left(x+1\right)+x+1
Tooge x võrrandis x^{2}+x sulgude ette.
\left(x+1\right)\left(x+1\right)
Tooge liige x+1 distributiivsusomadust kasutades sulgude ette.
\left(x+1\right)^{2}
Kirjutage ümber kaksliikme ruuduna.
x=-1
Võrrandi lahendi leidmiseks lahendage x+1=0.
2x^{2}+4x+2=0
Kõiki võrrandeid, mis on kujul ax^{2}+bx+c=0, saab lahendada ruutvõrrandi valemiga: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Ruutvõrrandi valem annab kaks lahendit: ühe, kui ± on liitmine, ja teise, kui see on lahutamine.
x=\frac{-4±\sqrt{4^{2}-4\times 2\times 2}}{2\times 2}
See võrrand on standardkujul: ax^{2}+bx+c=0. Asendage ruutvõrrandis \frac{-b±\sqrt{b^{2}-4ac}}{2a} väärtus a väärtusega 2, b väärtusega 4 ja c väärtusega 2.
x=\frac{-4±\sqrt{16-4\times 2\times 2}}{2\times 2}
Tõstke 4 ruutu.
x=\frac{-4±\sqrt{16-8\times 2}}{2\times 2}
Korrutage omavahel -4 ja 2.
x=\frac{-4±\sqrt{16-16}}{2\times 2}
Korrutage omavahel -8 ja 2.
x=\frac{-4±\sqrt{0}}{2\times 2}
Liitke 16 ja -16.
x=-\frac{4}{2\times 2}
Leidke 0 ruutjuur.
x=-\frac{4}{4}
Korrutage omavahel 2 ja 2.
x=-1
Jagage -4 väärtusega 4.
2x^{2}+4x+2=0
Ruutvõrrandite (nagu see siin) lahendamiseks tuleb mõlemad pooled ruutu tõsta. Ruutu tõstmiseks peab võrrand olema esmalt kujul x^{2}+bx=c.
2x^{2}+4x+2-2=-2
Lahutage võrrandi mõlemast poolest 2.
2x^{2}+4x=-2
2 lahutamine iseendast annab tulemuseks 0.
\frac{2x^{2}+4x}{2}=-\frac{2}{2}
Jagage mõlemad pooled 2-ga.
x^{2}+\frac{4}{2}x=-\frac{2}{2}
2-ga jagamine võtab 2-ga korrutamise tagasi.
x^{2}+2x=-\frac{2}{2}
Jagage 4 väärtusega 2.
x^{2}+2x=-1
Jagage -2 väärtusega 2.
x^{2}+2x+1^{2}=-1+1^{2}
Jagage liikme x kordaja 2 2-ga, et leida 1. Seejärel liitke 1 ruut võrrandi mõlemale poolele. Selle tehtega saab võrrandi vasakust poolest täisruut.
x^{2}+2x+1=-1+1
Tõstke 1 ruutu.
x^{2}+2x+1=0
Liitke -1 ja 1.
\left(x+1\right)^{2}=0
Lahutage x^{2}+2x+1. Kui x^{2}+bx+c on üldiselt täiuslik ruut, saab selle alati teguriteks lahutada kui \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+1\right)^{2}}=\sqrt{0}
Leidke võrrandi mõlema poole ruutjuur.
x+1=0 x+1=0
Lihtsustage.
x=-1 x=-1
Lahutage võrrandi mõlemast poolest 1.
x=-1
Võrrand on nüüd lahendatud. Lahendused on samad.
Näited
Ruutvõrrand
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonomeetria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaarne võrrand
y = 3x + 4
Aritmeetika
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samaaegne võrrand
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentseerimine
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integratsioon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Piirid
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}