Lahendage ja leidke x (complex solution)
x=2\pi n_{9}+\frac{5}{4}\pi +\frac{1}{2}i\ln(2)+\left(-\frac{1}{2}i\right)\ln(-2+2\times 2^{\frac{1}{2}})\text{, }n_{9}\in \mathrm{Z}
x=2\pi n_{9}+\frac{7}{4}\pi +\frac{1}{2}i\ln(2)+\left(-\frac{1}{2}i\right)\ln(-2+2\times 2^{\frac{1}{2}})\text{, }n_{9}\in \mathrm{Z}
x=\frac{1}{4}\pi +\frac{1}{2}i\ln(2)+2n_{28}\pi +\left(-\frac{1}{2}i\right)\ln(-2+2\times 2^{\frac{1}{2}})\text{, }n_{28}\in \mathrm{Z}
x=\frac{1}{4}\left(3\pi +2i\ln(2)+8\pi n_{28}+\left(-2i\right)\ln(-2+2\times 2^{\frac{1}{2}})\right)\text{, }n_{28}\in \mathrm{Z}
x=2\pi n_{41}+\frac{5}{4}\pi +\frac{1}{2}i\ln(2)+\left(-\frac{1}{2}i\right)\ln(2+2^{\frac{3}{2}})\text{, }n_{41}\in \mathrm{Z}
x=2\pi n_{41}+\frac{7}{4}\pi +\frac{1}{2}i\ln(2)+\left(-\frac{1}{2}i\right)\ln(2+2^{\frac{3}{2}})\text{, }n_{41}\in \mathrm{Z}
x=\frac{1}{2}i\ln(2)+\frac{1}{4}\pi +\left(-\frac{1}{2}i\right)\ln(2+2^{\frac{3}{2}})+2\pi n_{48}\text{, }n_{48}\in \mathrm{Z}
x=\frac{1}{2}i\ln(2)+\frac{3}{4}\pi +\left(-\frac{1}{2}i\right)\ln(2+2^{\frac{3}{2}})+2\pi n_{48}\text{, }n_{48}\in \mathrm{Z}
Graafik
Jagama
Lõikelauale kopeeritud
Näited
Ruutvõrrand
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonomeetria
4 \sin \theta \cos \theta = 2 \sin \theta
Lineaarne võrrand
y = 3x + 4
Aritmeetika
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Samaaegne võrrand
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Diferentseerimine
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integratsioon
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Piirid
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}