Liigu edasi põhisisu juurde
Lahendage ja leidke x (complex solution)
Tick mark Image
Lahendage ja leidke x
Tick mark Image
Graafik

Sarnased probleemid veebiotsingust

Jagama

125\left(8x^{3}-12x^{2}+6x-1\right)+2=66
Kasutage kaksliikme \left(2x-1\right)^{3} arendamiseks binoomvalemit \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3}.
1000x^{3}-1500x^{2}+750x-125+2=66
Kasutage distributiivsusomadust, et korrutada 125 ja 8x^{3}-12x^{2}+6x-1.
1000x^{3}-1500x^{2}+750x-123=66
Liitke -125 ja 2, et leida -123.
1000x^{3}-1500x^{2}+750x-123-66=0
Lahutage mõlemast poolest 66.
1000x^{3}-1500x^{2}+750x-189=0
Lahutage 66 väärtusest -123, et leida -189.
±\frac{189}{1000},±\frac{189}{500},±\frac{189}{250},±\frac{189}{200},±\frac{189}{125},±\frac{189}{100},±\frac{189}{50},±\frac{189}{40},±\frac{189}{25},±\frac{189}{20},±\frac{189}{10},±\frac{189}{8},±\frac{189}{5},±\frac{189}{4},±\frac{189}{2},±189,±\frac{63}{1000},±\frac{63}{500},±\frac{63}{250},±\frac{63}{200},±\frac{63}{125},±\frac{63}{100},±\frac{63}{50},±\frac{63}{40},±\frac{63}{25},±\frac{63}{20},±\frac{63}{10},±\frac{63}{8},±\frac{63}{5},±\frac{63}{4},±\frac{63}{2},±63,±\frac{27}{1000},±\frac{27}{500},±\frac{27}{250},±\frac{27}{200},±\frac{27}{125},±\frac{27}{100},±\frac{27}{50},±\frac{27}{40},±\frac{27}{25},±\frac{27}{20},±\frac{27}{10},±\frac{27}{8},±\frac{27}{5},±\frac{27}{4},±\frac{27}{2},±27,±\frac{21}{1000},±\frac{21}{500},±\frac{21}{250},±\frac{21}{200},±\frac{21}{125},±\frac{21}{100},±\frac{21}{50},±\frac{21}{40},±\frac{21}{25},±\frac{21}{20},±\frac{21}{10},±\frac{21}{8},±\frac{21}{5},±\frac{21}{4},±\frac{21}{2},±21,±\frac{9}{1000},±\frac{9}{500},±\frac{9}{250},±\frac{9}{200},±\frac{9}{125},±\frac{9}{100},±\frac{9}{50},±\frac{9}{40},±\frac{9}{25},±\frac{9}{20},±\frac{9}{10},±\frac{9}{8},±\frac{9}{5},±\frac{9}{4},±\frac{9}{2},±9,±\frac{7}{1000},±\frac{7}{500},±\frac{7}{250},±\frac{7}{200},±\frac{7}{125},±\frac{7}{100},±\frac{7}{50},±\frac{7}{40},±\frac{7}{25},±\frac{7}{20},±\frac{7}{10},±\frac{7}{8},±\frac{7}{5},±\frac{7}{4},±\frac{7}{2},±7,±\frac{3}{1000},±\frac{3}{500},±\frac{3}{250},±\frac{3}{200},±\frac{3}{125},±\frac{3}{100},±\frac{3}{50},±\frac{3}{40},±\frac{3}{25},±\frac{3}{20},±\frac{3}{10},±\frac{3}{8},±\frac{3}{5},±\frac{3}{4},±\frac{3}{2},±3,±\frac{1}{1000},±\frac{1}{500},±\frac{1}{250},±\frac{1}{200},±\frac{1}{125},±\frac{1}{100},±\frac{1}{50},±\frac{1}{40},±\frac{1}{25},±\frac{1}{20},±\frac{1}{10},±\frac{1}{8},±\frac{1}{5},±\frac{1}{4},±\frac{1}{2},±1
Ratsionaalarvuliste nullkohtade teoreemi järgi on kõik polünoomi ratsionaalarvulised nullkohad kujul \frac{p}{q}, kus p jagab konstantliikme -189 ja q jagab pealiikme kordaja 1000. Loetlege kõik kandidaadid \frac{p}{q}.
x=\frac{9}{10}
Ühe sellise juure leidmiseks proovige kõiki täisarvulisi väärtusi alates väikseimast (absoluutväärtuse alusel). Kui täisarvulisi juuri ei leita, proovige murdarve.
100x^{2}-60x+21=0
Teoreem korral x-k on polünoomi liikmete iga juure k. Jagage 1000x^{3}-1500x^{2}+750x-189 väärtusega 10\left(x-\frac{9}{10}\right)=10x-9, et leida 100x^{2}-60x+21. Lahendage võrrand, mille tulemus võrdub 0.
x=\frac{-\left(-60\right)±\sqrt{\left(-60\right)^{2}-4\times 100\times 21}}{2\times 100}
Kõik võrrandid, mis on kujul ax^{2}+bx+c=0, saab lahendada ruutvõrrandi valemiga: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Asendage a ruutvõrrandis väärtusega 100, b väärtusega -60 ja c väärtusega 21.
x=\frac{60±\sqrt{-4800}}{200}
Tehke arvutustehted.
x=-\frac{\sqrt{3}i}{5}+\frac{3}{10} x=\frac{\sqrt{3}i}{5}+\frac{3}{10}
Lahendage võrrand 100x^{2}-60x+21=0, kui ± on pluss ja kui ± on miinus.
x=\frac{9}{10} x=-\frac{\sqrt{3}i}{5}+\frac{3}{10} x=\frac{\sqrt{3}i}{5}+\frac{3}{10}
Loetlege kõik leitud lahendused.
125\left(8x^{3}-12x^{2}+6x-1\right)+2=66
Kasutage kaksliikme \left(2x-1\right)^{3} arendamiseks binoomvalemit \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3}.
1000x^{3}-1500x^{2}+750x-125+2=66
Kasutage distributiivsusomadust, et korrutada 125 ja 8x^{3}-12x^{2}+6x-1.
1000x^{3}-1500x^{2}+750x-123=66
Liitke -125 ja 2, et leida -123.
1000x^{3}-1500x^{2}+750x-123-66=0
Lahutage mõlemast poolest 66.
1000x^{3}-1500x^{2}+750x-189=0
Lahutage 66 väärtusest -123, et leida -189.
±\frac{189}{1000},±\frac{189}{500},±\frac{189}{250},±\frac{189}{200},±\frac{189}{125},±\frac{189}{100},±\frac{189}{50},±\frac{189}{40},±\frac{189}{25},±\frac{189}{20},±\frac{189}{10},±\frac{189}{8},±\frac{189}{5},±\frac{189}{4},±\frac{189}{2},±189,±\frac{63}{1000},±\frac{63}{500},±\frac{63}{250},±\frac{63}{200},±\frac{63}{125},±\frac{63}{100},±\frac{63}{50},±\frac{63}{40},±\frac{63}{25},±\frac{63}{20},±\frac{63}{10},±\frac{63}{8},±\frac{63}{5},±\frac{63}{4},±\frac{63}{2},±63,±\frac{27}{1000},±\frac{27}{500},±\frac{27}{250},±\frac{27}{200},±\frac{27}{125},±\frac{27}{100},±\frac{27}{50},±\frac{27}{40},±\frac{27}{25},±\frac{27}{20},±\frac{27}{10},±\frac{27}{8},±\frac{27}{5},±\frac{27}{4},±\frac{27}{2},±27,±\frac{21}{1000},±\frac{21}{500},±\frac{21}{250},±\frac{21}{200},±\frac{21}{125},±\frac{21}{100},±\frac{21}{50},±\frac{21}{40},±\frac{21}{25},±\frac{21}{20},±\frac{21}{10},±\frac{21}{8},±\frac{21}{5},±\frac{21}{4},±\frac{21}{2},±21,±\frac{9}{1000},±\frac{9}{500},±\frac{9}{250},±\frac{9}{200},±\frac{9}{125},±\frac{9}{100},±\frac{9}{50},±\frac{9}{40},±\frac{9}{25},±\frac{9}{20},±\frac{9}{10},±\frac{9}{8},±\frac{9}{5},±\frac{9}{4},±\frac{9}{2},±9,±\frac{7}{1000},±\frac{7}{500},±\frac{7}{250},±\frac{7}{200},±\frac{7}{125},±\frac{7}{100},±\frac{7}{50},±\frac{7}{40},±\frac{7}{25},±\frac{7}{20},±\frac{7}{10},±\frac{7}{8},±\frac{7}{5},±\frac{7}{4},±\frac{7}{2},±7,±\frac{3}{1000},±\frac{3}{500},±\frac{3}{250},±\frac{3}{200},±\frac{3}{125},±\frac{3}{100},±\frac{3}{50},±\frac{3}{40},±\frac{3}{25},±\frac{3}{20},±\frac{3}{10},±\frac{3}{8},±\frac{3}{5},±\frac{3}{4},±\frac{3}{2},±3,±\frac{1}{1000},±\frac{1}{500},±\frac{1}{250},±\frac{1}{200},±\frac{1}{125},±\frac{1}{100},±\frac{1}{50},±\frac{1}{40},±\frac{1}{25},±\frac{1}{20},±\frac{1}{10},±\frac{1}{8},±\frac{1}{5},±\frac{1}{4},±\frac{1}{2},±1
Ratsionaalarvuliste nullkohtade teoreemi järgi on kõik polünoomi ratsionaalarvulised nullkohad kujul \frac{p}{q}, kus p jagab konstantliikme -189 ja q jagab pealiikme kordaja 1000. Loetlege kõik kandidaadid \frac{p}{q}.
x=\frac{9}{10}
Ühe sellise juure leidmiseks proovige kõiki täisarvulisi väärtusi alates väikseimast (absoluutväärtuse alusel). Kui täisarvulisi juuri ei leita, proovige murdarve.
100x^{2}-60x+21=0
Teoreem korral x-k on polünoomi liikmete iga juure k. Jagage 1000x^{3}-1500x^{2}+750x-189 väärtusega 10\left(x-\frac{9}{10}\right)=10x-9, et leida 100x^{2}-60x+21. Lahendage võrrand, mille tulemus võrdub 0.
x=\frac{-\left(-60\right)±\sqrt{\left(-60\right)^{2}-4\times 100\times 21}}{2\times 100}
Kõik võrrandid, mis on kujul ax^{2}+bx+c=0, saab lahendada ruutvõrrandi valemiga: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. Asendage a ruutvõrrandis väärtusega 100, b väärtusega -60 ja c väärtusega 21.
x=\frac{60±\sqrt{-4800}}{200}
Tehke arvutustehted.
x\in \emptyset
Kuna negatiivse arvu ruutjuurt pole reaalväljal määratletud, siis lahendeid pole.
x=\frac{9}{10}
Loetlege kõik leitud lahendused.